A GENETICS-FIRST APPROACH TO AUTISM AND PSYCHOSIS SPECTRUM DISORDERS: THE 22Q11.2 DELETION SYNDROME

Carrie E. Bearden, Ph.D.
Psychiatry and Biobehavioral Sciences and Psychology
Semel Institute for Neuroscience and Human Behavior
University of California, Los Angeles

cbearden@mednet.ucla.edu
Lab Members/Alumni
Maria Jalbrzikowski
Chris Ching
Frank Sun
Amy Lin
Charlie Schleifer
Bernalyn Ruiz
Leila Kushan
Aarti Nair
Jennifer Forsyth
Gil Hoftman
Ariana Vajdi
Jamie Zinberg
Danielle Denenny
Simon Kapler
Monica Done
Laura Adery
Kathleen O’Hora
Carolyn Amir

22q11.2 International Brain Behavior
Consortium

22q11 ENIGMA Working Group

USC Laboratory of NeuroImaging
Julio Villalon
Paul Thompson
Chris Ching

Stanford University
Joachim Hallmayer
Sergiu Pasca

BRAIN
RESEARCH
INSTITUTE
UCLA
Common genes, small effect

Ripke et al. 2014

- Attenuated Psychotic Symptoms
- Autism Spectrum Disorder
- Anxiety Disorder
- ADHD

Schizophrenia

Autism Spectrum Disorder

Anxiety Disorder
Common genes, small effect

- Allows development of animal models with strong construct validity
- Ideal systems to dissect circuitry mediating behaviors
- Identified very early in development

High Penetrance (rare) Genes

15q13.3 del
3q29 del
22q11.2 microdeletion

Attenuated Psychotic Symptoms

Autism Spectrum Disorder
Anxiety Disorder
ADHD

Adapted from Bearden et al. Dev&Psychopathology 2016
Adapted from Ripke et al. 2014
Majority of cases of developmental neuropsychiatric dx of unknown etiology; But- rare genomic copy number variants (CNVs) may account for a larger proportion of cases than previously believed
- ~2% of schizophrenia cases (Levinson et al. 2011; Bassett et al. 2010; Rees et al. 2014); 25% of cases of simplex ASD (Geschwind 2015, Devlin & Scherer 2012)

Also provide strong evidence for genetic pleiotropy, challenging widely held views of diagnostic ‘categories’
Genetics First Approach

Simons Variation in Individuals Project (Simons VIP): A Genetics-First Approach to Studying Autism Spectrum and Related Neurodevelopmental Disorders

- Sample heterogeneity has been a major barrier to scientific discovery.
- Are there characteristics specific to certain subsets of patients with distinct genetic etiology?
- Treatment implications- Are treatments best tailored to a specific genetic event, or generalizable to those with neurodevelopmental/psychiatric illness of other or unknown etiology?
22q11.2 Microdeletion Syndrome

- Velocardiofacial/DiGeorge Syndrome
- Estimated incidence ~ 1/4000 live births (Grati et al. 2015)
- Results from hemizygous deletion of chromosome 22q11 (~2.6 Mb)
- Cardiac defects, immune deficiency, craniofacial anomalies, intellectual disability
- Risk of schizophrenia ~ 25x the general population risk (O’Rourke & Murphy 2019; Bassett et al. 2010); account for ~1% of sporadic SZ cases (Stefansson et al., 2008; Karayiorgou et al. 2010)
- Elevated rates of Autistic Spectrum Disorder (12-50%), ADHD (33-40%) and anxiety disorder (40-50%) in childhood (Schneider et al. 2014; Richards et al. 2014)

CNV and SCZ Working Group of PGC, Nat Gen 2016
Key Questions

่วยLimited data on individuals carrying the same highly penetrant CNV

่วยWhat are risk factors for psychosis in a highly penetrant CNV like 22q11DS? Do these overlap with idiopathic illness?

่วยAre there consistent and reproducible effects of the 22q11.2 deletion on brain structure? Do these effects converge with those observed in idiopathic psychosis?

 fromDate

=tket what are mechanisms underlying diverse phenotypic presentations in 22q11DS?

治好 Gene dosage effects may provide clues into disease biology; What are neurofunctional consequences of reciprocal imbalances?

治好 Premise: Copy number variation may have a more powerful effect on intermediate phenotype than common genetic variation.
Prevalence of Schizophrenia Spectrum Disorders by Age in 22q11DS (n=1402); 41% of adults age 25+

Schneider, iBBC et al AJP 2014
Overlapping and Distinct Neuropsychiatric Traits in 22q11DS

- Comorbidity rates are not frequently reported; but is the rule rather than exception.

- Affective dysregulation present in a substantial proportion of 22q11DS patients, across diagnoses

Jonas et al Biol Psych 2014
Cognitive Decline as a Predictor of Psychosis in the General Population; Dunedin Birth Cohort

IQ was stable across childhood for all groups but declined for the schizophrenia group between ages 13 and 38 (0.39 SD)

Meier et al. AJP 2014
Does Cognitive Decline Predict Psychosis in 22q11DS?

Verbal IQ decline significantly increased risk for psychosis (OR 3.5; 95% CI=1.77-9.04, p=0.001)

Vorstman et al JAMA Psychiatry, 2015
Other Risk Factors for Psychosis in 22q11DS

- Inattention symptoms (OR 1.51(1.05–2.22), p=.03) and ADHD diagnosis, esp. at 2 timepoints (OR=9.79(3.59–30.52), p<.001) predicted development of psychotic symptoms; ADHD diagnosis at both timepoints associated with psychotic disorder (4.76(1.37–18.91), p<.01) (Niarchou, iBBC, et al, 2019)

- Negative symptoms and functional impairment predicted emergence of positive psychosis-spectrum symptoms (Tang et al. 2017)

- Impairment in odor discrimination correlated with higher negative and overall psychosis-spectrum symptoms (Tang et al. 2018)

- Inflammation - higher serum levels of IL-6 and higher IL6:IL10 ratio (indicator of proinflammatory activation), inflammatory T-helper cells in psychotic 22q11DS (Domachevsky et al 2017, Vergaelen et al 2018)

- Prospective longitudinal study found no association between childhood ASD diagnosis and subsequent psychotic disorder (Fiksinski et al. 2017)
Why is rate of ASD so variable in 22q11DS studies?

- Rate of categorical ASD diagnosis ranges from 12-50% across studies

- Core autism behaviors (impairments in joint attention, gestural communication, initiating conversation, restricted interests + language delay) characteristic of 22q11DS

- Are distinct biological substrates associated with categorical ASD diagnosis in 22q11DS or does a dimensional approach better fit the findings?

Demographic and clinical characteristics of study participants

<table>
<thead>
<tr>
<th></th>
<th>22q11DS-ASD+ Participants (n=29)</th>
<th>22q11DS-ASD– Participants (n=32)</th>
<th>Typically Developing Controls (n=55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, +/- SD)</td>
<td>14.34 (5.70) [6-26]</td>
<td>13.78 (5.35) [6-25]</td>
<td>12.87 (4.93) [6-26]</td>
</tr>
<tr>
<td>Age range, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant Education</td>
<td>6.72 (4.41)</td>
<td>6.47 (4.72)</td>
<td>7.15 (5.16)</td>
</tr>
<tr>
<td>(years, +/- SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (N, % female)</td>
<td>11 (38%)</td>
<td>18 (56%)</td>
<td>26 (47%)</td>
</tr>
<tr>
<td>Mean WASI IQ (+/- SD)</td>
<td>76.7 (11.8)</td>
<td>81.5 (14.0)</td>
<td>110.2 (20.4)</td>
</tr>
</tbody>
</table>

\[22q-ASD+ and 22q11DS-ASD– did not significantly differ on measures of WASI IQ (t=1.5, p=.2).\]

Jalbrzikowski et al Biol Psych CNNI 2017
Categorical Differences: 22q11DS with and without ASD

- Dimensional model best fit for cognitive measures and amygdala volume
- Categorical model best fit for parahippocampal thickness
Common genetic variants influence human subcortical brain structures.

ENIGMA 22q11.2 Group Demographics

<table>
<thead>
<tr>
<th>Site</th>
<th>N</th>
<th>Age ± SD</th>
<th>Sex (M/F)</th>
<th>22q11DS</th>
<th>22q11Dup</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLA</td>
<td>152</td>
<td>14.6±8.1</td>
<td>79/73</td>
<td>75</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Davis</td>
<td>213</td>
<td>10.8±2.3</td>
<td>112/101</td>
<td>123</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>IOP</td>
<td>65</td>
<td>17.2±8.4</td>
<td>31/34</td>
<td>38</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Newcastle</td>
<td>39</td>
<td>17.3±2.9</td>
<td>17/22</td>
<td>20</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>SUNY</td>
<td>75</td>
<td>20.8±2.0</td>
<td>43/32</td>
<td>55</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Maastricht</td>
<td>74</td>
<td>29.6±8.8</td>
<td>44/30</td>
<td>28</td>
<td>-</td>
<td>46</td>
</tr>
<tr>
<td>Utrecht</td>
<td>58</td>
<td>18.2±3.8</td>
<td>19/39</td>
<td>58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Toronto</td>
<td>65</td>
<td>41.9±7.9</td>
<td>31/34</td>
<td>53</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Penn</td>
<td>100</td>
<td>17.3±3.2</td>
<td>60/40</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Cardiff</td>
<td>36</td>
<td>15.8±7.3</td>
<td>18/18</td>
<td>23</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Santiago</td>
<td>26</td>
<td>21.2±5.6</td>
<td>9/17</td>
<td>14</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

22q11DS N= 537, 22q11Dup N= 40 (UCLA)
Healthy Controls N= 331

http://enigma.ini.usc.edu/?p=4900
Determinants of Neuroanatomic Features: Cortical Thickness vs. Surface Area

- Volume measures derived from indices of both CT and SA
- Driven by distinct genetic mechanisms1,2; Different underlying neurobiology/developmental trajectory3,4

Surface Area (SA):
- Total area covered by cortex in a region

Cortical Thickness (CT):
- Average thickness of 6 cortical layers in region

1Winkler et al., 2009; 2Panizzon et al., 2009;
3 Raznahan et al. 2011; 4Tamnes et al 2017

Grasby et al., 2020, *Science*
Determinants of Neuroanatomic Features: Cortical Thickness vs. Surface Area

Surface Area (SA):
c total area covered by cortex in a region

Cortical Thickness (CT):
average thickness of 6 cortical layers in region

CT shaped by later developmental processes, possibly synaptic density + myelination

Methods

- Freesurfer 5.3.0 processing pipeline (http://enigma.ini.usc.edu/protocols/)
- Covary for age, age2, sex, site

Grasby et al., 2020, *Science*
Cortical Maps: Widespread SA reductions in 22q11DS and increased CT in majority of regions

- Accuracy peaks at 94.44% (125 features) – vs. ~65% for ‘idiopathic’ Bipolar Disorder (Nunes et al Molec Psych 2018)
- 86.36% accuracy using bilateral cuneus and lingual SA

Sun et al, Molecular Psychiatry 2018
Cross-diagnosis correlation indicates significant convergence with cortical brain regions affected in idiopathic schizophrenia ($r=0.45$, $p<.0001$; van Erp et al, Biol Psych 2018) but not major depression ($r=.06$; $p=0.62$; Schmaal et al, Molec Psych 2017)
“Masks” Complex Pattern of Subcortical Alterations in 22q11DS

- Predominantly affects subregions with projections
- to frontal, cingulate, and association cortices
- Prominent Reductions in Hippocampus, Amygdala, Ventral Thalamus in 22q11DS Cases with Psychosis vs. 22q11DS-No Psychosis

Blue/Green regions of lower thickness or SA;
Red/Yellow regions of higher thickness or SA

Ching et al, Am J Psych 2020
Cross-Disorder Analysis: Convergence of Subcortical Alterations in 22q+Psychosis with SCZ, MDD, Bipolar Disorder and OCD (NOT ASD, ADHD)

Ching et al, Am J Psych 2020
Which 22q11.2 Genes Drive Brain Phenotypes?

- Typical A-D 22q11.2 deletion spans 46 protein-coding genes
- Several highly expressed in brain & involved in early neuronal migration, cell fate decision in cortex, microRNAs
Effects of Deletion Size on Cognition (n=1420)

Full Scale, Verbal and Performance IQ decreased by 0.3-0.5 SD in AD vs. AB deletions

Zhao et alAJMG 2018
Might brain structural differences underlie effect of deletion size on IQ?

- Shape analysis reveals localized differences as a function of deletion size (not detected by gross volume analysis)

- Increased SA in hippocampus, thalamus and putamen in small (A-B) deletion

- Consistent with higher cortical SA in A-B Deletion carriers (p=.003)

Blue/Green indicate regions of lower thickness or surface area
Red/Yellow indicate regions of higher thickness or surface area

Evidence that duplications of 22q11.2 protect against schizophrenia

A number of large, rare copy number variants (CNVs) are deleterious for neurodevelopmental disorders, but large, rare, protective CNVs have not been reported for such phenotypes. Here we show in a CNV analysis of 47,005 individuals, the largest CNV analysis of schizophrenia to date, that large duplications (1.5–3.0 Mb) at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of this locus—are substantially less common in schizophrenia cases than in the general population (0.014% vs 0.085%, OR = 0.17, \(P = 0.00086 \)). 22q11.2 duplications represent the first putative protective mutation for schizophrenia.

Keywords: 22q11.2; CNV; duplication; protective; schizophrenia

Table 1. Frequencies of 22q11.2 duplications in cases and controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Case 22q11.2 dup frequency (N CNVs/N samples)</th>
<th>Control 22q11.2 dup frequency (N CNVs/N samples)</th>
<th>P value (Fisher’s exact test)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>0% (0/6 882)</td>
<td>0.089% (10/11 255)</td>
<td>0.017 (2-Tail)</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGS EA</td>
<td>0.090% (2/215)</td>
<td>0.16% (4/2556)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGS AA</td>
<td>0% (0/977)</td>
<td>0.23% (2/881)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISC</td>
<td>0% (0/3 395)</td>
<td>0.031% (1/3 185)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish/WTCCC2</td>
<td>0% (0/1 377)</td>
<td>0.10% (1/992)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>0.061% (1/1 637)</td>
<td>0% (0/960)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>0% (0/4 655)</td>
<td>0.066% (4/6 038)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total replication</td>
<td>0.021% (3/14 236)</td>
<td>0.082% (12/14 612)</td>
<td>0.026 (1-Tail)</td>
<td></td>
</tr>
<tr>
<td>Total discovery + replication</td>
<td>0.014% (3/21 138)</td>
<td>0.085% (22/25 867)</td>
<td>0.00086 (2-Tail)</td>
<td>0.17 (0.050–0.56)</td>
</tr>
</tbody>
</table>

Other disorders

<table>
<thead>
<tr>
<th>ID/DD/CM</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reported Loci

<table>
<thead>
<tr>
<th>Region/Gene</th>
<th>CHR</th>
<th>BP (Mb)</th>
<th>Type</th>
<th>Cases</th>
<th>Controls</th>
<th>Cases</th>
<th>Controls</th>
<th>Data Set 3 (4092 Controls)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22q11.2</td>
<td>22</td>
<td>18.6–21.8</td>
<td>DEL</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td></td>
<td>11.01 (1.33–505.04)</td>
</tr>
<tr>
<td>22q11.2</td>
<td>22</td>
<td>18.6–21.8</td>
<td>DUP</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>.0 (0–4.44)</td>
</tr>
</tbody>
</table>
Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities

A novel highly-penetrant form of obesity due to microdeletions on chromosome 16p11.2

Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus

Opposing Brain Differences in 16p11.2 Deletion and Duplication Carriers

Abid Y. Qureshi,1,2,5,6 Sophia Mueller,1,2,5 Abraham Z. Snyder,1,2 Pratik Mukherjee,1,2 Jeffrey L. Berman,3 Timothy P. L. Roberts,1,2,7 Srikanthan S. Nagarajan,1,2 John E. Spiro,1,2 Wendy K. Chung,1,2 Elliott H. Sherr,1,2 and Randy L. Buckner1,2,5 on behalf of the Simons VIP Consortium
Microduplication 22q11.2: A new chromosomal syndrome

Marie-France Portnoï

<table>
<thead>
<tr>
<th>Type</th>
<th>Band</th>
<th>Location (NCBI 36/hg18)</th>
<th>Size (kb)</th>
<th>Recurrence (del/dup)</th>
<th>Frequency (n = 3,816)</th>
<th>p value (C = 232)</th>
<th>Studies</th>
<th>Genes (RefSeq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16q22.3</td>
<td>chr16:69,987,425–70,647,241</td>
<td>660</td>
<td>2 (1/1)</td>
<td>0.05%</td>
<td>1.00</td>
<td>1.2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>20q13.33</td>
<td>chr20:61,056,624–61,076,763</td>
<td>20</td>
<td>3 (1/2)</td>
<td>0.08%</td>
<td>0.53</td>
<td>2.4</td>
<td></td>
<td>SLC17A9</td>
</tr>
<tr>
<td>22q11.21</td>
<td>chr22:17,265,500–19,786,200</td>
<td>2,521</td>
<td>5 (3/2)</td>
<td>0.13%</td>
<td>0.002</td>
<td>1,2,3,4</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

-Frequency of 0.05% in non-syndromic simplex ASD

UCLA Study Participant Demographics

<table>
<thead>
<tr>
<th></th>
<th>22q11.2 Deletion Carriers</th>
<th>Typically-developing Controls</th>
<th>22q11.2 Duplication Carriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>107</td>
<td>82</td>
<td>38</td>
</tr>
<tr>
<td>Age (SD)</td>
<td>16.03 (10.3)</td>
<td>14.47 (7.5)</td>
<td>15.87 (12.4)</td>
</tr>
<tr>
<td>Age Range</td>
<td>6 to 61</td>
<td>6 to 45</td>
<td>5 to 49</td>
</tr>
<tr>
<td>N males (%)</td>
<td>52 (48.6%)</td>
<td>42 (50.6%)</td>
<td>22 (57.9%)</td>
</tr>
<tr>
<td>N White (%), ,</td>
<td>93 (86.9%)</td>
<td>51 (62.2%)</td>
<td>37 (97.4%)</td>
</tr>
<tr>
<td>N Other (%), ,</td>
<td>2 (1.9%)</td>
<td>18 (16.8%)</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>N Multi-racial (%), ,</td>
<td>12 (11.2%)</td>
<td>12 (14.6%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Highest Parental Education in years (SD)</td>
<td>16.1 (2.7)</td>
<td>16.0 (3.3)</td>
<td>15.8 (2.5)</td>
</tr>
<tr>
<td>N ASD (%), ,</td>
<td>49 (45.8%)</td>
<td>0 (0%)</td>
<td>17 (44.7%)</td>
</tr>
<tr>
<td>N psychosis (%), ,</td>
<td>13 (12.1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>N ADHD (%), ,</td>
<td>47 (43.9%)</td>
<td>5 (6.1%)</td>
<td>15 (39.4%)</td>
</tr>
</tbody>
</table>

* indicates corrected 22qDEL-22qCON difference. ** indicates corrected 22qDUP-22qCON differences. †† indicates corrected 22qDEL-22qDUP difference.

Lin et al, Biological Psych 2020
Gene Dosage Effect on 22q11.2 Behavioral Phenotype

Lin et al, Biological Psych 2020
Gene Dosage Effect on Repetitive Behavior Phenotypes

Restricted Interests

Self-Injurious Behavior

Compulsive Behavior

Sameness Behavior

Ritualistic Behavior

Stereotypic Behavior

Lin et al, Biological Psych 2020
Opposing Effects on Cortical Surface Area and Thickness in Deletion vs. Duplication

dup < CTL < del

del < CTL < dup

Lin et al J Neurosci 2017
For many parents of children with 22q11DS, risk of psychiatric illness is main concern regarding their child's health (Hercher and Bruenner 2008, Martin et al. 2012).

Peay & Austin 2011, 2021
Cross – Disorder Analyses

- Fundamental principles of how genomic CNVS affect brain architecture

- May be distinguishable ‘neuropsychiatric’ profiles in subgroups based on genetic etiology

- Substantially larger effect sizes on phenotype
Neurobehavioral Profile of ASD-Associated CNVs

Profile differences between genetic variant groups

- 54% of CNV carriers who did not meet full ASD diagnostic criteria had elevated levels of autistic traits.

Chawner et al. Am J Psych 2021
Areas needing (lots) more attention

- Effectiveness of interventions used in idiopathic disorders (cognitive-behavioral therapy, social skills training)
- 3 small studies of computerized cognitive training, 1 of small-group social cognitive training; preliminary evidence for feasibility/efficacy (Buijs et al. 2019)
- Environmental risk factors (family environment, social support, SES)
- 22q11.2-associated disorders in diverse, non-European populations extremely understudied
The “Genes to Mental Health” (G2MH) consortium is an initiative funded ($6 Million) under the RFA ‘Rare Genetic Disorders as a Window into the Genetic Architecture of Mental Disorders’ by the National Institute of Mental Health? (NI MH) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). It includes researchers from 14 institutions and seven countries from North America, Europe, and Africa. Learn more.

Why G2MH?

Rare genomic disorders affect less than 1/2000 people in the general population, but collectively, they are a major cause of developmental and psychiatric conditions, such as autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and intellectual disability. Recent advances in genomic technologies and data sharing have revolutionized the identification and diagnosis of these rare variants. Rare genomic disorders have large impacts, which allow researchers to interrogate the link between molecular function and psychiatric symptoms. However, more detailed studies are needed to fully characterize clinical presentation and risk for particular developmental and psychiatric conditions in individuals with a rare genomic variant. The G2MH consortium was initiated to address this challenge.

How can G2MH further our understanding of mental health consequences of rare genomic disorders?

Most rare variants have been studied in isolation. As a result, essential information is sprinkled across many small studies that are difficult to compare. To accelerate discovery, the G2MH consortium will collate and harmonize genetic data with quantitative measures of cognition and behavior across multiple genomic variants associated with increased risk of developmental and psychiatric outcomes. This coordinated effort across patients, families, researchers, clinicians and institutions, including rapid sharing of data, is required to translate discoveries into therapeutic potential.

https://genes2mentalhealth.com
Summary and Future Directions

- Rare genomic disorders like 22q11 collectively a major cause of developmental neuropsychiatric disorders
- 22q11DS is one of greatest known risk factors for psychosis; prognostic markers (cognitive decline, inattention) appear similar to idiopathic psychosis
- Reductions in heteromodal association cortex /hippocampus converge with regions affected in idiopathic schizophrenia - suggests highly penetrant CNV's can inform understanding of broader psychiatric disease risk
- More severe brain and cognitive impact in those with larger deletion extent
- New evidence that 22q11 is a genomic region associated with mirrored anatomic phenotypes
- Ongoing work in longitudinal, global cohorts of reciprocal 22q11 variants and other RGDs, and in animal and in vitro models can guide translation of neurobiologically-informed therapeutic targets.
Acknowledgements

This work supported by: The National Institute of Mental Health (NIMH), Brain-Behavior Research Foundation (NARSAD), Simons Foundation, and all the patients and their families who participated.