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a b s t r a c t

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic
cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and
pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer
may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural sig-
naling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within
the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo
optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an
orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their
microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dis-
semination to normal adjacent pancreas. These effects were associated with increased expression of inva-
sion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of b-adrenergic
signaling induced similar effects to chronic stress, and pharmacological b-blockade reversed the effects
of chronic stress on pancreatic cancer progression. These findings indicate that neural b-adrenergic sig-
naling regulates pancreatic cancer progression and suggest b-blockade as a novel strategy to complement
existing therapies for pancreatic cancer.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction even when surgery results in tumor-free resection margins recur-
Pancreatic cancer is the fourth leading cause of cancer-related
death, with approximately 40,000 new cases in the US each year
(Siegel et al., 2012). The overall survival rate is less than 5% and
effective strategies to improve clinical outcomes are critically
needed. Survival from pancreatic cancer depends on successful
resection of the primary tumor with 5-year survival rates of 20–
30% reported in specialized centers (Gaedcke, 2010). However,
rence rates are high and most patients eventually die of local tu-
mor recurrence and metastatic disease (Kleeff, 2007; Hishinuma,
2006; Han, 2006). Additionally, many patients are diagnosed with
advanced stage pancreatic cancer, which limits surgical treatment
(Kazanjian, 2008; Bilimoria, 2007). Gemcitabine is the standard-of-
care chemotherapy regimen for locally advanced and metastatic
pancreatic cancer, but the overall prolongation of survival is disap-
pointingly small (5–7 months) (Storniolo, 1999; Herrmann, 2007;
Rougier, 2013). Recent trials of combination chemotherapies and
targeted therapeutic strategies including FOLFIRINOX, nab-Paclit-
axel and the EGFR inhibitor, erlotinib, have shown additional sur-
vival benefit of only days to weeks, with increased toxicity that
limits their use to otherwise fit patients (Conroy, 2011; Moore,
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2007; Von Hoff, 2013). Development of improved therapeutic
strategies to treat pancreatic cancer requires a more detailed
understanding of the molecular and cellular mediators that influ-
ence pancreatic cancer growth and dissemination.

The limited success of existing therapeutic strategies may be
due, in part, to our poor understanding of the effect of cross-talk
between pancreatic tumor cells and their surrounding stroma on
cancer progression (Feig, 2012; Demir et al., 2012; Vonlaufen,
2008). Pancreatic adenocarcinomas interact with a complex stro-
ma that includes nerve fibers, infiltrating immune cells, endothelial
cells, and pancreatic stellate cells that secrete abundant extracellu-
lar matrix (Demir et al., 2012; Vonlaufen, 2008; Apte et al., 2012;
Hamada et al., 2013; Richins, 1945). These stromal cells exert a
critical influence on pancreatic cancer progression (Demir et al.,
2012; Vonlaufen, 2008; Apte et al., 2012; Hamada et al., 2013;
Farrow et al., 2008). However, many therapeutic strategies were
developed in cell-based and non-orthotopic disease models that
fail to reflect the complexity of in vivo interactions (Feig, 2012;
Johnson, 2001). Identification of new targets for novel therapies
to slow or prevent pancreatic cancer requires studies in disease
models that better recapitulate interactions between tumor cells
and the pancreatic microenvironment.

The pancreas is innervated by fibers of the sympathetic ner-
vous system (SNS), which regulate pancreatic functions including
release of insulin by islet cells and release of digestive enzymes
by acinar cells (Richins, 1945; Holmgren and Olsson, 2011). SNS
fibers are activated during chronic stress and release catecholam-
inergic neurotransmitters that act on adrenoceptors to modulate
cell behavior. b-adrenoceptors are present on pancreatic tumor
cells and in vitro studies suggest that tumor cell behavior may
be sensitive to b-adrenergic signaling (Guo, 2009; Schuller and
Al-Wadei, 2010; Zhang, 2010). However, the effect of stress-in-
duced b-adrenergic signaling on cancer progression within the
complex pancreatic microenvironment has not been investigated.
To address this we used an orthotopic model of human pancreatic
cancer to investigate the effect of chronic stress on primary tumor
growth and tumor cell dissemination within the pancreatic
microenvironment.
2. Methods

2.1. Orthotopic pancreatic cancer model

The human pancreatic ductal adenocarcinoma cell lines Panc-1,
HPAF-II and Capan-1 were obtained from the American Type Cul-
ture Collection, and maintained at 37 �C, 5% CO2. These cell lines
were chosen because they have mutated TP53 and KRAS, which
are common driver mutations in pancreatic cancer and because
they range from well differentiated (Capan-1) to moderately and
highly undifferentiated (HPAF-II and Panc-1, respectively) (Yachida,
2012). Panc-1 cells were cultured in DMEM (Invitrogen) supple-
mented with 10% fetal bovine serum (Bovogen Biologicals) and
1% penicillin–streptomycin (Sigma–Aldrich). HPAF-II cells were
cultured in RPMI (Invitrogen) supplemented with 10% fetal bovine
serum and 1% penicillin–streptomycin. Capan-1 cells were cul-
tured in DMEM supplemented with 20% fetal bovine serum and
1% penicillin–streptomycin. To model human pancreatic cancer,
4 � 105 tumor cells in Matrigel (BD Bioscience) were injected into
the tail of the pancreas of six week old female BALB/c-Foxn1nu
nude athymic mice (The University of Adelaide, Australia) by lapa-
rotomy as previously described (Chai, 2013). Panc-1 was chosen
for in vivo studies as tumors are poorly differentiated which is
characteristic of patients who are diagnosed with advanced stage
and grade (Chai, 2013; Hotz, 2003). To track tumor progression
in vivo, cell lines were transduced with FUhLucW construct that
expresses firefly luciferase under control of the ubiquitin C pro-
moter (Morizono, 2005). Tumor progression was monitored longi-
tudinally over 42 days by in vivo and ex vivo optical bioluminescent
imaging using an IVIS Lumina ll system (Perkin Elmer) as described
previously (Chai, 2013; Sloan, 2010). The presence of tumor cell
dissemination beyond the tumor margins and into adjacent normal
pancreas and metastasis to distant organs was measured by ex vivo
optical imaging using long exposure times (>60 s), and confirmed
by hematoxylin and eosin staining. Findings were validated in
2–4 independent experiments. All procedures were conducted in
accordance with protocols approved by Institutional Animal Care
and Use Committee of Monash University.

2.2. Chronic stress

Mice were randomly assigned to home cage control conditions
(control) or 2 h per day restraint (stress) for 28 days commencing
7 days before tumor cell injection. Mice were restrained in a con-
fined space that prevented them from moving freely but did not
press on them (Thaker, 2006). This paradigm has been shown to in-
duce chronic stress as shown by neuroendocrine activation
(Thaker, 2006; Manni, 2008), weight loss (Smagin, 1999)
(Supplementary Fig. 1), and anxiety-like behaviors (Hermann,
1994) but does not cause pain or wounding (Sheridan, 2004).

2.3. Pharmacological studies

For b-adrenergic antagonist studies 10 mg/kg/day (R/S)-pro-
pranolol (treatment) or water vehicle (placebo) was delivered to
mice subcutaneously by osmotic minipump (Model 1004, Alzet).
Propranolol was delivered for the duration of the experiment
commencing seven days prior to tumor cell injection, with pumps
replaced 24 days after implantation. Drug plasma concentration
was assessed 20 days after pump implantation by UPLC-MS using
a Micromass Quattro Premier coupled to an Acquity UPLC
(Waters). For b-adrenergic agonist studies, 5 mg/kg/day (S/S)-iso-
proterenol (treatment) or 1 mM HCl vehicle (placebo) was deliv-
ered subcutaneously to mice via osmotic minipump (Model
1002, Alzet). Isoproterenol was delivered for 28 days, commenc-
ing seven days prior to tumor cell injection, with pumps replaced
14 days after implantation. Mice were maintained in their home
cage for the duration of experiments that included isoproterenol
treatment.

2.4. Invasion assay

2.5 � 105 pancreatic cancer cells in serum free culture medium
were seeded into the top well of a transwell chamber with 8.0 lm
pores (BD Falcon) that was coated with 15 mg/mL Matrigel. Cells
were allowed to migrate towards medium containing 20% serum
for 22 h and then stained with DAPI. Cells that had migrated to
the underside of the membrane were counted.

2.5. Proliferation assay

The influence of isoproterenol on proliferation was assessed
using the CellTiter 96� AQueous One Proliferation Assay (Prome-
ga). 8 � 103 cells were seeded into a 96-well plate and assayed over
120 h, according to manufacturer’s instructions.

2.6. Gene expression studies

RNA was isolated from cell lines or primary pancreatic tumors
using RNeasy Mini Kit (Qiagen). Transcript levels were quantified
by RT-PCR using iScript One-Step RT-PCR kit (Biorad) and spe-
cies-specific Taqman probes (Applied Biosystems) to identify
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human (tumor cell) vs mouse (stromal cell) genes (ADRB1
Hs02330048_s1, Mm00431701_s1; ADRB2 Hs00240532_s1,
Mm02524224_s1; MMP2 Hs01548727_m1, Mm00439498_m1;
MMP9 Hs00234579_m1, Mm00442991_m1) with 50 amplification
cycles of 15 s strand separation at 95 �C and 60 s annealing and
extension at 60 �C. Samples were analyzed in triplicate and expres-
sion was normalized to RPL30 expression (Hs00265497_m1,
Mm01613252_g1) (Rubie, 2005).
2.7. cAMP assay

5 � 105 cells were seeded into a 96-well transparent plate and
cultured overnight. Cells were washed with PBS and incubated in
stimulation buffer (phenol-free DMEM, 0.1% BSA, 1 mM IBMX) at
37 �C for 60 min. Agonists were added for 30 min before cells were
lysed with ice-cold 100% ethanol and rehydrated with lysis buffer
(0.01% BSA, 5 mM HEPES, 0.3% Tween20). Cell lysates were incu-
bated with AlphaScreen™ beads diluted in lysis buffer, followed
by incubation with donor beads, and fluorescence signal was mea-
sured with a Fusion plate reader (Perkin Elmer). cAMP accumula-
tion was expressed as a fraction of maximal stimulation induced
by 10 lM forskolin.
2.8. Immunostaining

Cells were grown on slides, fixed in �20 �C acetone then incu-
bated with antibodies against b2-adrenoceptor (H-20 rabbit poly-
clonal diluted 1:150, Santa Cruz Biotechnologies) for 16 h at 4 �C,
followed by incubation with fluorescent Alexa-conjugated second-
ary antibodies (Invitrogen) and DAPI nuclear stain (Sigma). Immu-
nostaining was imaged using an inverted microscope with
fluorescence filters (Olympus). De-identified archival patient sam-
ples were obtained from Bern University Hospital in accordance
with protocols approved by the Institutional Human Research
Ethic Committee. Samples were dewaxed and incubated with anti-
bodies as above and visualized by reaction with diaminobenzidine
peroxidase (Vector) with hematoxylin counterstain.
2.9. Statistical analyses

Student’s t test analyzed the effect of stress or isoproterenol on
size and frequency of tumor cell dissemination and metastasis, and
differences in gene expression levels. Data are presented as
mean ± standard error. To determine the effect of stress on the lon-
gitudinal growth trajectory of tumors, and whether those effects
were modified by pharmacological interventions that targeted
b-adrenoreceptors, we examined the stress � treatment interac-
tion term in a 2 (control vs stress) � 2 (treatment vs placebo)
experimental design in the context of mixed-effects linear model
analysis (Demidenko, 2004). Data were analysed according to the
model: yijt = a + vtij + b1di1tij + b2di2tij + b3di3tij + ai + bitij + eijt where:
yi is the tumor-specific luciferase activity for the ith mouse on
the logarithmic scale, t is the time (days of followup), a is the inter-
cept parameter, v is the common growth rate parameter, dij

(j = 1,. . .,3) are binary variables so that dij = 1 if the ith mouse be-
longs to the jth group and 0 otherwise; ai and bi are independent
mouse-specific random effects, which we assume to be normally
distributed; and ei is the error term. Estimated parameters are pre-
sented in Supplementary Table 1 where Model 1 (Fig. 3C) and Mod-
el 2 (Fig. 1C) have the same structure but Model 2 sets b2 = b3 = 0
for analysis of two (control and stress) groups. Parameter estimates
were computed in R programming environment using the package
nlme (Pinheiro and Bates, 2000).
3. Results

3.1. Chronic stress increases pancreatic cancer progression

To assess the effects of chronic stress on cancer progression
within the pancreatic microenvironment, we used biolumines-
cence imaging to monitor primary tumor growth and metastatic
dissemination in an orthotopic mouse model of human pancreatic
cancer. To investigate the effect of chronic stress in the context of
crosstalk between cancer cells and pancreatic stromal cells, lucifer-
ase-tagged Panc-1 cells were injected into the pancreas by laparot-
omy (Chai, 2013). Chronic stress was induced by subjecting mice to
repeated daily restraint (Fig. 1A), which up regulates adrenergic
stress response pathways as indicated by weight loss and increased
tissue catecholamine levels (Supplementary Fig. 1) (Thaker, 2006).
Longitudinal analysis found that stress increased the rate of pan-
creatic tumor growth by 10.92% ± 3.07 per day compared to mice
maintained in their home cage (p < .01) (Fig. 1B). The effect of
stress on primary tumor bioluminescence was apparent by day
21 after tumor cell injection and resulted in >10-fold increased tu-
mor-specific bioluminescence at day 42 (p < 0.001) (Fig. 1B and C).

Pancreatic cancer morbidity and mortality is induced by pri-
mary tumor growth, tumor cell invasion of adjacent normal pan-
creas which may seed recurrence after resection, as well as
metastatic dissemination to distant organs. To investigate the ef-
fect of stress on each of these contributors to disease progression,
we evaluated primary tumor mass, tumor cell dissemination into
adjacent normal pancreas and frequency of distant metastasis.
Chronic stress increased primary tumor mass by 5-fold
(7.5 mg ± 5 vs. 41 mg ± 13; p = 0.03) (Fig. 1D). To investigate the ef-
fect of stress on tumor cell dissemination beyond resection mar-
gins and into surrounding normal pancreas, the primary tumor
was identified in the pancreatic tail adjacent to the spleen
(Fig. 2A, left panel) and resected with 2 mm margins. R0 resection
margins were confirmed by bioluminescence imaging (Fig. 2A,
middle panel). The remaining pancreas was imaged ex vivo to iden-
tify disseminated luciferase-positive tumor cells (Fig. 2A, middle
panel). Stress increased bioluminescence in adjacent normal pan-
creas by >10-fold (p = 0.004) (Fig. 2B). Local invasion of tumor cells
in the pancreatic microenvironment was confirmed by histology
(Fig. 2A, right panel). In addition to effects within the pancreas,
stress induced metastatic dissemination of tumor cells to distant
organs in 50% of mice compared to control where no distant metas-
tasis was detected (Figs. 2C and 1B). Bioluminescence imaging and
histological analyses confirmed the presence of liver metastasis
(Fig. 2D), which also occurs in patients with pancreatic cancer
(Michalski, 2008). These findings indicate that chronic stress pro-
motes pancreatic cancer progression by accelerating primary tu-
mor growth and dissemination of tumor cells within the
pancreas and by inducing metastatic colonization of distant
organs.
3.2. Beta-blockade slows pancreatic cancer progression

Chronic stress was found to accelerate progression of other so-
lid tumor types and hematological malignancies through b-adren-
ergic signaling pathways (Sloan, 2010; Thaker, 2006; Lamkin,
2012; Ben-Eliyahu, 1999; Madden et al., 2011; Schuller, 2010).
To investigate the role of b-adrenergic signaling in pancreatic tu-
mor growth and dissemination, mice were treated with the non-
selective b-blocker propranolol to block signaling through
b-adrenoceptors. LC–MS analysis confirmed systemic exposure of
propranolol was successfully maintained throughout the treat-
ment period, with an average propranolol plasma concentration
41 ng/mL (range: 27–76 ng/mL). Consistent with previous findings
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(Fig. 1), stress increased the pancreatic tumor growth rate by 7.58%
(±1.73) per day (p < .001). Treatment with propranolol reversed the
effect of stress on pancreatic tumor growth rate by 2.83% (±1.73),
resulting in a 60% decrease in tumor-specific bioluminescence on
day 42 (p = .016)(Fig. 3A and B). These findings suggest that stress
acts through b-adrenergic signaling to modulate pancreatic cancer
progression. Consistent with that hypothesis, propranolol blocked
the effect of stress on primary tumor growth (41 mg ± 13 vs.
21 mg ± 5) and on tumor cell dissemination through adjacent nor-
mal pancreas (4.8 � 106 p/s ± 2.1 � 106 vs 2.9 � 104 ± 0.7 � 104)
(p = 0.05) (Fig. 3C and D). Beta-blockade did not modulate the ef-
fect of stress on metastasis in the timeframe of this investigation
(Supplementary Fig. 2).

To investigate if b-adrenergic signaling is sufficient to increase
pancreatic cancer progression, mice were treated with b-adreno-
ceptor agonist isoproterenol vs vehicle control. Isoproterenol in-
creased the rate of primary tumor growth (Fig. 4A and B),
resulting in 1.9-fold increase in primary tumor mass at 42 days
after tumor cell injection (p = 0.04) (Fig. 4C). Isoproterenol treat-
ment increased tumor cell dissemination into the adjacent pan-
creas by 3.9-fold (p = 0.004) (Fig. 4D), and induced metastatic
dissemination to distant organs in 50% of mice (Fig. 4E). These find-
ings indicate that pharmacological b-adrenoceptor activation is
sufficient to accelerate pancreatic cancer progression and show
that b-adrenergic signaling is critical for the effects of chronic
stress on primary tumor growth and tumor cell dissemination to
the surrounding pancreatic microenvironment.
3.3. Beta-adrenergic signaling regulates pancreatic cancer cell invasion

To begin to explore the extent to which stress acts directly on
tumor cells versus on the surrounding pancreatic microenviron-
ment, we examined the effect of b-adrenoceptor activation on tu-
mor cell proliferation and invasion in the absence of the
pancreatic microenvironment. Immunostaining showed b-adreno-
ceptors on pancreatic cancer cell lines and on pancreatic cancer
cells in pancreatic tumor samples from patients (Fig. 5A). Quantita-
tive RT-PCR confirmed expression of transcripts for b1- and b2-
adrenoceptors in each cell line (Fig. 5B, Supplementary Fig. 3A).
To confirm functional coupling of b-adrenoceptors to intracellular
signaling pathways, tumor cells were treated with isoproterenol
and the effect on cAMP levels was assayed. Isoproterenol induced
a dose dependent accumulation of cAMP in tumor cells (Fig. 5C,
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Supplementary Fig. 3B), suggesting that pancreatic cancer cells are
responsive to b-adrenoceptor signaling. However, despite func-
tional receptor coupling to downstream signaling pathways, iso-
proterenol treatment did not modulate proliferation of cultured
tumor cells (Supplementary Fig. 4). This indicates that b-adrenergic
signaling is insufficient to increase pancreatic cancer cell prolifer-
ation and suggests that the effects of stress on primary tumor
growth in vivo (Fig. 1C) may require additional factors (e.g.
b-adrenergic regulated stromal-derived growth factors) (Schuller
and Al-Wadei, 2010; Zhang, 2010; Schuller, 2007; Askari et al.,
2005; Chan et al., 2008).

To investigate if b-adrenoceptor signaling directly to tumor cells
is sufficient to modulate tumor cell invasion, cells were treated
with isoproterenol and the effects on expression of invasion related
genes and on basement membrane invasion were assayed. Isopro-
terenol induced modest expression of genes involved in tumor cell
invasion including matrix metalloprotease 2 (MMP2) and MMP9 (2-
fold to 4-fold increase, p < 0.01), and this was associated with in-
creased invasion through Matrigel (p < 0.01)(Fig. 5D). Tumor cell
invasion was blocked by propranolol, indicating a requirement
for b-adrenoceptor signaling. However, in contrast to the modest
effects observed in cultured tumor cells, chronic stress significantly
up regulated expression of invasion genes in the pancreatic micro-
environment. Species-specific qRT-PCR analyses found that stress
preferentially up-regulated tumor cell MMP9 expression in pri-
mary pancreatic tumors (54-fold increase vs. control, p < .001)
and stromal cell MMP2 expression (>100-fold increase, p < 0.01)
in primary pancreatic tumors (Fig. 5E), consistent with patterns
of MMP expression observed in pancreatic tumors from
patients (Maatta, 2000). Collectively, these findings suggest that
b-adrenoceptor signaling directly to pancreatic cancer cells may
impact invasion, and emphasize the importance of the pancreatic
microenvironment in regulating tumor cell proliferation and
invasion.
4. Discussion

These studies found that chronic stress acts through b-adrener-
gic signaling pathways to increase pancreatic tumor growth and
invasion. In the context of the pancreatic microenvironment,
b-adrenergic signaling accelerated growth of primary pancreatic
tumors and significantly enhanced tumor cell dissemination
through adjacent normal pancreas and to distant organs. Even with
potentially curative R0 resection, prognosis of patients with pan-
creatic cancer is exceptionally poor and autopsy results suggest
that tumor recurrence approaches 100% (Hishinuma, 2006; Sperti,
1997; Takahashi, 1995). These findings raise the possibility that
chronic stress may contribute to pancreatic tumor recurrence by
facilitating dissemination of tumor cells into adjacent normal pan-
creas where they may seed recurrent tumor growth and metastasis
even after resection of the primary tumor. Pharmacologic blockade
of b-adrenergic signaling with propranolol stopped tumor cell
invasion of adjacent pancreas, which suggests that b-blockers
may complement existing chemotherapeutic strategies to slow or
prevent pancreatic tumor growth and invasion, and improve sur-
vival of patients with pancreatic cancer.

Beta-adrenergic regulation of primary pancreatic tumor growth
contrasts with neural regulation of other solid tumor types
including breast cancer where b-adrenoceptor signaling did not in-
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control. (D) The magnitude of tumor cell dissemination into pancreas adjacent to the primary tumor was quantified by ex vivo imaging after surgical resection of the primary
tumor. Luciferase activity: �106 p/s. (E). The frequency of metastasis-bearing mice was determined at 42 days after tumor cell injection.
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Fig. 5. Beta-adrenergic signaling induced pancreatic cancer cell invasion. (A) Immunostaining for b1-adrenoceptor (b1AR) and b2-adrenoceptor (b1AR, red) on Panc-1
pancreatic cancer cells (Upper and middle panel, blue: DAPI, inset: isotype control, scale bar: 5 lm) and archived human pancreatic cancer (Lower panel, scale bar: 100 lm).
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crease primary tumor size but selectively accelerated metastatic
dissemination (Sloan, 2010; Madden et al., 2011; Perez Pinero,
2012). Pancreatic tumors frequently arise in the head of the pan-
creas where their growth may obstruct the bile duct and pancreatic
duct, leading to jaundice, pruritus and liver metastasis (Bond-
Smith, 2012). This suggests that b-adrenergic regulation of primary
pancreatic tumor growth – in addition to its effects on tumor cell
invasion and dissemination – may contribute to the morbidity
and mortality associated with pancreatic cancer. The physiological
mechanisms for these differential effects on primary tumor growth
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are unclear but may reflect how stress signals are delivered to the
tumor microenvironment and which stromal cells are responsive
to those signals. In the context of breast cancer, chronic stress
modulates the tumor microenvironment by recruiting M2 macro-
phages to primary tumors, which supports a switch to pro-meta-
static gene expression (Sloan, 2010; Madden et al., 2011; Perez
Pinero, 2012). Unlike breast, pancreas is densely innervated by
SNS fibers, and it is possible that direct neurotransmitter activation
of pancreatic stromal cell types such as pancreatic stellate cells
may impact primary tumor growth. Pancreatic stellate cells are
fibroblast-like cells specific to the pancreas that contribute to
inflammation and tumorigenesis (Vonlaufen, 2008; Mace, 2013).
Pancreatic stellate cells produce cytokines and growth factors
and induce a desmoplastic reaction that has been implicated in
chemoresistance (Apte, 2013). Pancreatic stellate cells are closely
related to hepatic stellate cells, which express b-adrenoceptors
and are sensitive to catecholaminergic neurotransmitter signaling
(Sigala, 2013). The effect of b-adrenoceptor signaling on pancreatic
stellate cells is yet to be investigated and may provide insight to
the effects of chronic stress on primary pancreatic cancer growth.

To fully understand the impact of chronic stress on pancreatic
cancer progression, it will be important to further investigate the
effects of b-adrenergic signaling to tumor cells versus stromal cells
in the pancreatic microenvironment. Matrix metalloproteases
facilitate tumor cell invasion and contribute to pancreatic cancer
progression. MMP2 and MMP9 are differentially regulated by pan-
creatic tumor cells and pancreatic stromal cells in patient samples
(Maatta, 2000). However the physiological factors that modulate
pancreatic cancer MMP expression are unknown. Our findings
identify chronic stress as a novel regulator of MMP expression,
which selectively up-regulated MMP9 in tumor cells and MMP2
in stromal cells in the pancreatic microenvironment. These find-
ings suggest beta-blockade as a pharmacological intervention to
limit expression of invasive genes and to prevent pancreatic cancer
cell dissemination (Fig. 3D).

Use of an orthotopic model of pancreatic cancer allowed the
first investigation of the effects of chronic stress on tumor develop-
ment and progression in the pancreatic microenvironment. In con-
trast, interpretation of previous studies that investigated
pancreatic tumor growth in flank was limited by the context of
non-physiological intercellular interactions (Lin, 2012; Al-Wadei,
2012; Schuller, 2011; Al-Wadei et al., 2009). To better understand
b-adrenergic regulation of pancreatic cancer onset it will be impor-
tant to investigate the effects of chronic stress in transgenic models
that spontaneously develop pancreatic cancer (Herreros-Villanueva,
2012). Modified study design will also be required to investigate b-
adrenergic regulation of pancreatic cancer metastasis. Both physi-
ologic and pharmacologic b-adrenergic activation induced metas-
tasis (Figs. 2C and D, 4E). However, b-blockade did not modulate
this effect in the short (six week) timeframe of these studies. This
study design was chosen to focus on events that occur early in tu-
mor development as studies of other tumor types suggest that this
time point is sensitive to b-adrenergic signaling (Sloan, 2010; Tha-
ker, 2006; Lamkin, 2012). However, this design limited investiga-
tion of metastatic dissemination from pancreas to distant organs
as few metastases arose during the six week timeframe of tumor
growth. In future studies, a modified design that includes surgical
resection of the primary tumor and longitudinal imaging follow up
of tumor recurrence and metastasis would better facilitate assess-
ment of b-adrenergic regulation of tumor recurrence and metasta-
sis (Chai, 2013).

As primary tumor growth and tumor cell invasion of surround-
ing pancreas impact patient survival, the findings of the current
study have important implications for management of chronic
stress in patients with pancreatic cancer. Diagnosis of pancreatic
cancer is associated with high levels of distress (Carlson, 2004;
Zabora, 2001), and beta-blocker treatment may be one strategy
to reduce distress (Lindgren, 2013). Findings presented here sug-
gest that in addition to improving quality of life, therapeutic inter-
vention of b-adrenergic stress response pathways might also affect
cancer progression. To translate these findings it will be important
to prospectively investigate the effect of b-blockade on disease
progression in pancreatic cancer patients and to define the patient
populations that will optimally benefit from adjuvant beta-blocker
therapy.
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