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ABSTRACT
Motivation: In microarray studies it is often of interest to identify
upstream transcription control pathways mediating observed changes
in gene expression. The Transcription Element Listening System
(TELiS) combines sequence-based analysis of gene regulatory
regions with statistical prevalence analyses to identify transcription-
factor binding motifs (TFBMs) that are over-represented among the
promoters of up- or down-regulated genes. Efficiency is maximized
by decomposing the problem into two steps: (1) a priori compila-
tion of prevalence matrices specifying the number of putative binding
sites for a variety of transcription factors in promoters from all genes
assayed by a given microarray, and (2) real-time statistical analysis
of pre-compiled prevalence matrices to identify TFBMs that are over-
or under-represented in promoters of differentially expressed genes.
The interlocking JAVA applications namely, PromoterScan and Pro-
moterStats carry out these tasks, and together constitute the TELiS
database for reverse inference of transcription factor activity.
Results: In two validation studies, TELiS accurately detected in vivo
activation of NF-κB and the Type I interferon system by HIV-1 infec-
tion and pharmacologic activation of the glucocorticoid receptor in
peripheral blood mononuclear cells. The population-based statist-
ical inference underlying TELiS out-performed conventional statistical
tests in analytic sensitivity, with parametric studies demonstrating
accurate identification of transcription factor activity from as few as
20 differentially expressed genes. TELiS thus provides a simple,
rapid and sensitive tool for identifying transcription control pathways
mediating observed gene expression dynamics.
Availability: http://www.telis.ucla.edu
Contact: coles@ucla.edu

INTRODUCTION
It is now possible to monitor the transcriptional activity of an
entire genome using massively parallel measurement technologies
such as DNA microarrays or Serial Analysis of Gene Expression
(SAGE) (Schena et al., 1995; Velculescu et al., 1995; Lockhart et al.,
1996). Once global changes in gene expression have been defined,
it is often of interest to identify the transcription control pathways

∗To whom correspondence should be addressed.

mediating those dynamics. This article presents a sensitive and effi-
cient computational strategy for monitoring the activity of multiple
biological signaling pathways via their impact on the expression of
genes bearing known transcription factor binding motifs (TFBMs)
in their upstream regulatory regions.

Biological signals are transduced through a variety of receptor-
mediated signaling pathways that converge on a small set of bio-
chemical reactions modulating gene expression (Carey and Smale,
2000). Chief among these is a system of transcription factors that
bind to DNA in a sequence-specific manner and recruit generic tran-
scriptional machinery to a gene’s core promoter (Mitchell and Tjian,
1989; Pabo and Sauer, 1992; Smale, 2001). Each transcription factor
binds to a characteristic DNA motif such as GGGGCGGGG for Sp1
or TGACGTCA for CREB (Letovsky and Dynan, 1989; Hill and Tre-
isman, 1995). This basic relationship between nucleotide sequence
and transcription factor binding permits inferences about which sig-
naling pathways are likely to modulate a gene’s expression based
on the sequence of its promoter (Wingender et al., 1996). The cas-
cading relationships among extracellular events, receptor-mediated
signal transduction, transcription factor activation and genome reg-
ulation constitute a directed information flow by which cells adapt
to environmental conditions. The advent of genome-wide expression
monitoring provides an opportunity to reverse this causal sequence
and infer upstream signaling dynamics from changes in global gene
expression. At the most immediate level, it should be possible to
identify the specific transcription factors mediating observed changes
in gene expression based on the prevalence of their characteristic
TFBMs in the promoters of co-regulated genes. An extensive body
of research linking transcription factor activation to upstream second
messenger systems and extracellular ligand/receptor networks (Hill
and Treisman, 1995) also provides an opportunity for more distal
inferences about the extracellular conditions modulating cellular
activity [e.g. ambient proinflammatory cytokines activating nuclear
factor- κB (NF-κB)] (Ghosh et al., 1998). Both the proximal infer-
ence of transcription factor activity and the distal inference of signal
transduction depend on the ability to detect TFBMs that are over-
or under-represented in the promoters of co-regulated genes rel-
ative to the genome as a whole. Genome-wide promoter analyses
have recently been used to identify novel TFBMs (Roth et al., 1998;
Spellman et al., 1998; van Helden et al., 1998; Hertz and Stormo,
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1999; Wagner, 1999; Wolfsberg et al., 1999; Bussemaker et al., 2000,
2001; Holmes and Bruno, 2000; Chiang et al., 2001; Liu et al.,
2001; Ohler and Niemann, 2001). We focus on the distinct problem
of surveying known TFBMs to identify the specific factors driving
observed changes in gene expression.

Reverse inference of transcription factor activity would seem to
be a straightforward problem, but several difficulties have hampered
its widespread utilization. One obstacle is the intensive computa-
tion required to retrieve and scan large numbers of promoters for
sequence homology. This effectively restricts reverse-inference ana-
lyses to users with strong bioinformatic skills and computational
resources. A second difficulty is the lack of an efficient analytic
framework for evaluating the statistical significance of variations in
TFBM prevalence. Development of a valid statistical approach has
been complicated by the combinatorial nature of gene regulation and
the poor signal-to-noise characteristics of genome-wide expression
assays. Most genes are regulated through the coordinated actions of
multiple transcription factors, so the presence of a single TFBM in
a gene’s promoter does not guarantee that it will be expressed even
if its cognate transcription factor is activated (Mitchell and Tjian,
1989; Wagner, 1999; Carey and Smale, 2000; Holmes and Bruno,
2000; Chiang et al., 2001). Conversely, the absence of a TFBM for a
given factor does not ensure the absence of regulation because many
transcriptional dynamics are mediated indirectly by secondary waves
of transcription factor activity (e.g. factor A induces the expression
of factor B, and factor B subsequently activates promoters bearing
no consensus binding site for factor A). As a result, the presence
of a TFBM is only loosely linked to the array of genes regulated
by an active transcription factor. This problem is compounded by
the fact that current analyses can severely underestimate the num-
ber of genes showing true differential expression (Cole et al., 2003).
All these dynamics effectively contaminate the group of ‘unregu-
lated control’ promoters with genes that should actually be assigned
to the ‘differentially expressed’ subset, and vice versa. Such cross-
contamination is known as the ‘errors in variables’ problem in the
statistical literature, and it can profoundly degrade analytic accuracy
(Miller, 1986). As a result, it is risky to rely on the results of reverse-
inference analyses unless they can be shown to perform accurately
in validation studies.

We developed the Transcription Element Listening system
(TELiS) as a database-driven solution to the problems outlined
above. This article describes the analytic strategy underlying TELiS
and reports validation studies showing that it can accurately detect
transcription factor activation under well-defined experimental con-
ditions and amidst noisy in vivo pathology. We also present data
on the comparative speed and accuracy of TELiS, with particular
emphasis on alternative statistical strategies and methods for optimiz-
ing analytic sensitivity. Results show that population-based statistical
inference can be coupled with genome-wide assessment of TFBM
prevalence to provide accurate ‘reverse inference’ of transcription
factor activity.

SYSTEM AND METHODS
The two major obstacles impeding reverse-inference analyses and addressed
by TELiS. (1) To speed the inference process and make it available to biolo-
gists with no bioinformatic background, the most computationally intensive
aspects of the problem are ‘pre-solved’ by generating a set of TFBM preval-
ence matrices. Each matrix records the number of putative binding sites for
an array of transcription factors in promoters from all genes represented on

a commonly used microarray (e.g. Affymetrix HuGene-FL, U95A, U133A,
Mu11K, U74A, Mouse 430, U34A and Rat 230 high density oligonucleotide
arrays). Such prevalence matrices can take weeks to compile depending
upon the size of a promoter (bases analyzed), the number of genes analyzed
(∼20 000–30 000) and the number of TFBMs analyzed. However, once a
matrix is available, it takes only seconds for analytic procedures to identify
TFBMs that are over- or under-represented in promoters of an arbitrary set of
differentially expressed genes. (2) To avoid the inferential difficulties asso-
ciated with ‘errors in variables’, the statistical analysis is approached as a
single-sample inference problem with known population parameters. In con-
ventional statistical analyses such as the t-test, errors in variables lead to
inaccurate estimates of the true sampling variability of TFBM prevalence in
the population of all promoters (Miller, 1986). This undermines the accuracy
of p-values testing differential representation because the standard error of
that difference is estimated as a function of the inferred population sampling
variance (Miller, 1986). However, a single-sample z-test does not require any
sample-based inferences about TFBM variability because that parameter is
already known at the population level (i.e. the mean and standard deviation of
the number of TFBMs in each promoter is pre-compiled for all genes assayed
by a given microarray). As a result, a population-based approach could poten-
tially detect perturbations in TFBM prevalence with greater accuracy than
conventional sample-based approaches such as the t-test.

Validation studies
To evaluate the performance of TELiS, we analyzed two datasets in which
specific signaling pathways were known to be activated. The first test involved
focal stimulation of the glucocorticoid receptor by exogenous hydrocortisone
(cortisol). Peripheral blood mononuclear cells (2 × 107) were isolated by
Ficoll density gradient centrifugation and cultured overnight in 10 ml of
RPMI supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin,
10% autologous donor serum, and either 1 µM hydrocortisone (Sigma)
or an equivalent volume of medium. Twelve-hours later, total RNA was
harvested (Qiagen RNEasy, Valencia CA), treated with DNAse (Qiagen),
converted to fluorescent cRNA and hybridized to Affymetrix U133A high-
density oligonucleotide arrays in the UCLA Gene Expression Core according
to the manufacturer’s protocol (Affymetrix, Santa Clara CA). Scanned images
were analyzed for up-regulated genes using Affymetrix Microarray Suite
v5 software with default analysis parameters (paired comparison of each
donor’s hydrocortisone-treated cells with parallel untreated cells). This exper-
iment was repeated for three independent donors, and genes significantly
up-regulated in all three replicates were subject to reverse-inference ana-
lysis by TELiS. Controlled pharmacologic stimulation ensured that a single
transcription factor was initially activated.

In addition to the highly controlled glucocorticoid model, we also
examined the capacity of TELiS to detect inflammatory signaling in a noisy
in vivo pathology model. HIV-1 infection activates multiple proinflammatory
transcription factors in lymphoid cells, including interferon response factors
and NF-κB (Roulston et al., 1995; Corbeil et al., 2001; Keir et al., 2002;
Miller et al., 2003; Yonezawa et al., 2003). To determine whether TELiS
could identify such activation in vivo, we assessed differential gene expres-
sion in human fetal thymocytes after they had been stably engrafted in a
SCID mouse host for 6 weeks and infected for 3 more weeks with the NL4-3
strain of HIV-1 or a mock infected control (Aldrovandi et al., 1993; Cole
et al., 2003). Differentially expressed genes were identified as described
above using Affymetrix HuGene-FL high-density oligonucleotide arrays and
Microarray Suite v5 paired analysis of HIV versus mock-infected cells from
the same thymic tissue donor (default analysis parameters). Genes identi-
fied as significantly increased in each of the two replicate experiments were
subject to reverse-inference analysis by TELiS.

ALGORITHM AND IMPLEMENTATION
Transcription element listening system consists of four interacting
components outlined in Figure 1. A JAVA application called Pro-
moterScan assesses the incidence of TFBMs in promoters for all
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Fig. 1. Structure of TELiS. Four interlocking components provide rapid identification of TFBMs that are over- or under-represented in promoters of differentially
expressed genes. PromoterScan establishes a set of sampling frames corresponding to specific microarray platforms. Promoters for each gene are scanned for
an array of TFBMs from the TRANSFAC database, and the number of sites in each promoter is stored in the TELiS database as a population prevalence matrix
(P promoters × T TFBMs). In response to a user request, the TELiS website passes a list of differentially expressed genes and the microarray platform used
to detect them to the JAVA servlet, PromoterStats. PromoterStats retrieves the appropriate population prevalence matrix and generates a sample prevalence
matrix containing TFBM frequencies for the subset of differentially expressed genes. For each TFBM, representation in the differentially expressing promoters
is compared to the sampling frame as a whole by z-test (or a binomial test for binary present/absent data). Test statistics, p-values and prevalence information
are returned to the user via the web interface to identify transcription factors that drive observed expression dynamics.

genes in a genome and stores the resulting ‘population prevalence
matrix’ in the TELiS database. Users interact with a World Wide
Web interface (http://www.telis.ucla.edu) to supply a list of differ-
entially expressed genes and specify the sampling frame in which
they were identified (e.g. the microarray used). Based on that input,
a JAVA servlet called PromoterStats retrieves TFBM prevalence data
from the TELiS database and computes statistical summaries of over-
or under-representation in regulated promoters relative to the basal
prevalence of TFBMs across the entire sampling frame. Results are

ranked according to statistical significance and returned to the user
in real time. The web page also has a utility for downloading raw
data on TFBM prevalence in promoters of specified genes. Details
are provided below.

PromoterScan and the TELiS database PromoterScan retrieves
promoter sequences for all transcripts in a specified genome, scans
each promoter for a fixed array of TFBMs and stores the number of
sites identified in the TELiS database. Nucleotide sequences come
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from the NCBI RefSeq database (Pruitt and Maglott, 2001) (human
transcripts as of September 2003, and mouse and rat transcripts
as of December 2003), and promoters are defined as nucleotide
sequences spanning positions −300 to +0, −600 to +0 or −1000 to
+200 relative to the RefSeq transcription start site (TSS). Each pro-
moter is scanned with 192 nucleotide position matrices representing
all vertebrate TFBMs in the anonymous FTP release of TRANS-
FAC v3.2 (V$ matrices) (Wingender et al., 1996). Scans utilize
the TRANSFAC MatInspector algorithm (Quandt et al., 1995) at
mat_sim stringencies of 0.80, 0.90 and 0.95. Prevalence values for
transcripts with multiple putative start sites are averaged to provide a
single value for each gene. Results are stored in MySQL 4.0 as separ-
ate prevalence tables for each combination of species (human, mouse,
rat), promoter size (300, 600, 1200 bases), and scan stringency (0.80,
0.90, 0.95), with HGNC Gene Symbols serving as unique keys. The
database also contains parallel tables from PromoterScan analyses
treating TFBM incidence as a binary variable (present versus not
present in each promoter).

PromoterStats and the TELiS website The TELiS website and its
associated servlets are housed on an Apache Tomcat 4.0 server with
JDBC connections to the TELiS database. For reverse-inference ana-
lyses, the website collects a list of D differentially expressed genes
and an indication of the sampling frame in which those changes were
measured (the specific microarray used). This information is passed
to PromoterStats, which then generates two data matrices; a ‘popu-
lation prevalence matrix’ specifying the number of binding sites for
each TFBM in promoters of all P genes in the sampling frame, and
a ‘sample prevalence matrix’ indicating the number of TFBMs in
promoters of the D differentially expressed genes. The mean pre-
valence of each TFBM in the sample prevalence matrix is computed
and tested for over- or under-representation relative to the popula-
tion mean prevalence using a single-sample z-test (Kanji, 1999). For
TFBM t , the test statistic zt is defined as:

zt = (x̄t − µt)D
1/2/σxt , (1)

where x̄t is the mean number of detected binding sites for transcrip-
tion factor t among the D promoters in the sample prevalence matrix,
µt is the mean number of sites for factor t among the P promoters
in the population prevalence matrix, and σx̄t is the standard devi-
ation of the number of sites for factor t in the population prevalence
matrix. Positive values of z indicate over-representation of TFBM
t in promoters of differentially expressed genes and negative val-
ues indicate under-representation (a possible inhibitory effect). Each
z-value generates a two-tailed p-value gauging statistical signific-
ance. Binary (present/not) data are analyzed in a standard binomial
test, with p-values derived from the probability of observing St or
more positive promoters in a sample of D Bernoulli trials, each
of which has a probability of positive outcome equal to the pre-
valence of TFBM t in the sampling frame as a whole (Kanji,
1999). Statistically significant under-representation is assessed by
the probability of observing St or fewer positive promoters, with S

indicating the number of promoters in the differentially expressing
subset that contain at least one instance of TFBM t . Population1

1The appropriate population is not the set of all human genes, but the set of
all transcripts that could possibly be observed to change in a given experi-
ment (e.g. all genes on the microarray used). This is a significant distinction

prevalence matrices are derived from genes listed in microar-
ray manufacturers’ annotation files (e.g. HG-U133A_annot.csv
at http://www.affymetrix.com/analysis/download_center.affx). It
could be argued that the most appropriate reference population for
analysis is the set of genes found to be expressed in the exper-
imental samples, rather than the entire population of transcripts
assayed by the microarray. The web interface includes a form for
submitting both a list of genes constituting the sampling frame and a
differentially expressed subset: http://www.med.ucla.edu:8080/telis/
TELiSDifferentialExpressionCustomSamplingFrame.htm. A servlet
is also provided to analyze TFBM frequencies relative to a Poisson-
distributed population with intensity parameter = Dµt : http://www.
med.ucla.edu:8080/telis/TELiSDifferentialExpressionPoisson.htm.
However, the z-test is recommended instead because population
TFBM frequencies do not generally follow a Poisson distribution
(detailed in the section titled, ‘Performance relative to alternative
approaches’).

In addition to individual statistical results for each TFBM, Pro-
moterStats also estimates the false discovery rate (FDR) (Benjamini
and Hochberg, 1995) across the entire set of significant results. The
FDR gives the fraction of significant results that are likely due to
chance and is estimated as,

FDRp = T �p/np , (2)

where T is the number of TFBMs surveyed, �p is the expected
proportion of false positive errors at a specified significance level
(e.g. p < 0.01) and np is the number of observed tests significant
at that level. �p is estimated by Monte Carlo analysis of significant
results in 100 000 randomly sampled gene lists of size D drawn from
the same sampling frame. In addition to FDR estimates for the default
significance threshold of p < 0.01, p-value thresholds that control
the FDR at 10, 20, 30 and 40%, are derived from regression analysis
of the relationship between estimated FDR and p-values ranging
between 0.03 and 0.0001.

because genes in the sampling frame are not necessarily representative of the
genome as a whole in terms of TFBM prevalence. For example, the genes
represented on the Affymetrix U133A GeneChip have approximately half as
many glucocorticoid response elements in their promoters (mean = 0.083
per promoter, SD = 2.88) as do the entire set of sequenced human genes
(mean = 0.151, SD = 3.88; difference p = 0.019 by a single-sample z-test).
Inappropriate use of the genome-wide sampling frame could thus prevent
detection of glucocorticoid signaling in a GeneChip experiment even if gluco-
corticoid response elements were 2-fold over-represented among promoters
of differentially expressed genes.

It could be argued that the most appropriate population is the subset of
assayed transcripts that are expressed in one or more of the experimental
samples. However, the use of an ‘expressed gene’ sampling frame consist-
ently weakened the detection of known signal transduction activity in both
the glucocorticoid and HIV validation studies. All target TFBMs were still
detected at statistically significant levels, but the over-representation ratios
and p-values were noticeably attenuated. The sensitivity loss stemmed mainly
from inaccuracies in the definition of the expressed population that resulted
from negative biases in transcript ‘present’ calls by Affymetrix Microarray
Suite v5. It is unclear whether similar problems might exist for other low-level
expression analyses, but conservatism suggests using ‘microarray population’
sampling frames to avoid such biases. However, the option of restricting the
sampling frame remains available at: http://www.med.ucla.edu:8080/telis/
TELiSDifferentialExpressionCustomSamplingFrame.htm.
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Table 1. Performance of alternative statistical analyses in detecting over-representation of TFBMs

Experiment (TFBM matrix) Parametera Statistical test

2-sample t-testb 1-sample t-test z-test

Glucocorticoid (V$GRE_C) Mean difference 0.0045 0.0044 0.0044
SD 0.0736/0.0301c 0.0736 0.0320
SE of difference 0.0038 0.0038 0.0017
Test statistic 1.18 1.15 2.65
p-value 0.240 0.251 0.008

HIV (V$NFKB_C) Mean difference 0.0257 0.0252 0.0252
SD 0.1909/.1082c 0.1909 0.1108
SE of difference 0.0166 0.0166 0.0196
Test statistic 1.55 1.52 2.62
p-value 0.124 0.131 0.009

HIV (V$IRF2_01) Mean difference 0.0177 0.0173 0.0173
SD 0.1490/.0718c 0.1490 0.0743
SE of difference 0.0130 0.0129 0.0064
Test statistic 1.36 1.34 2.69
p-value 0.173 0.182 0.007

aMean difference = mean number of TFBMs in promoters of up-regulated genes − unregulated genes (2-sample test) or − population mean prevalence (1-sample tests); SD =
estimated population standard deviation in number of TFBMs per promoter; SE of difference = estimated standard error of mean difference, test statistic = z-value or t-value;
p-value = two-tailed p-value associated with test statistic.
bStandard deviation of TFBM prevalence in regulated promoters significantly exceeded that of unregulated promoters in all cases (p < 0.001 by Levene’s test). All 2-sample t-tests
therefore use the Welch formula for unequal variances (Miller, 1986).
cStandard deviation of TFBM prevalence in the group of regulated and unregulated promoters, respectively. Standard error of difference for 2-sample t-test is a sample-size weighted
function of both SDs (Miller, 1986).

Validation
To assess the accuracy of reverse inference by TELiS, we analyzed
data from a controlled experimental system involving pharmacolo-
gic stimulation of the glucocorticoid receptor in peripheral blood
mononuclear cells. Cells were cultured for 12 h in the presence
of 1 µM hydrocortisone or vehicle control and mRNA expres-
sion was surveyed by Affymetrix U133A high-density oligonuc-
leotide arrays. Among 22 215 assayed transcripts, 304 showed
consistent up-regulation across three replicate experiments. TELiS
revealed significant over-representation of glucocorticoid response
elements among promoters of up-regulated genes (V$GRE_C: 6.7-
fold increase relative to unregulated genes, z = 3.12, p = 0.0018).
Ten other TFBMs were also identified as over-represented, and eight
of those corresponded to transcription factors known to interact
with or be regulated by glucocorticoid receptors (Oct family mem-
bers, AP1 family members, SRE, Elk1, CDP and E2F) (Karagianni
and Tsawdaroglou, 1994; Rhee et al., 1994; Pearce et al., 1998;
Prefontaine et al., 1998; Miyazaki et al., 2000; Zhu and Dudley,
2002). In the context of the total 192 TFBMs surveyed, these res-
ults give a specificity >90% and a positive predictive value of 82%.
Thus, TELiS can accurately detect focal transcription factor activ-
ation under carefully controlled conditions, even in a background
of low basal gene expression (cells were not stimulated by any
mitogens).

To evaluate performance in a noisier in vivo environment, we
tested the ability of TELiS to detect activation of proinflammatory
transcription factors during HIV-1 infection of human thymocytes
in a thy/liv SCID-hu mouse model. Three weeks following inocu-
lation of implanted human thymic tissue with HIV-1 or a vehicle

control, viral pathology was documented by PCR detection of
HIV-1 provirus and depletion of CD4+/CD8+thymocytes relative
to mock-infected cells (data not shown). mRNA was harvested in
parallel and assayed using Affymetrix HuGene-FL high-density oli-
gonucleotide arrays. Of the 7070 assayed transcripts, 105 showed
significant up-regulation in each of the two replicates. Among
the promoters of those genes, TELiS identified a substantial over-
representation of binding sites for interferon response factor 1
(V$IRF1_01: 8.4-fold increase, z = 6.44, p < 10−10) and
interferon response factor 2 (V$IRF2_01: 5.5-fold increase, z =
3.21, p = 0.0013), as well as the consensus interferon-stimulated
response element (V$ISRE_01: 18.2-fold increase, z = 10.07, p <

10−10) and two matrices defining consensus NF-κB response ele-
ments (V$NFKAPPAB_01: 2.3-fold increase, z = 2.73, p =
0.0064; V$NFKB_Q6: 4.5-fold increase, z = 4.35, p =
0.0000134). Previous experimental studies have shown that each
of these signaling pathways is in fact activated during HIV-1 infec-
tion (Roulston et al., 1995; Corbeil et al., 2001; Keir et al., 2002;
Miller et al., 2003; Yonezawa et al., 2003), and these motifs consti-
tuted four of the top five hits identified in the over-representation
analysis. In contrast, TELiS failed to indicate significant over-
representation of TFBMs for transcription factors known not to be
induced by HIV-1 infection (e.g. Oct1, V$OCT1_Q6: 0.930-fold
change, z = −0.11, p = 0.918; Sp1, V$SP1_Q6: 0.776-fold
change, z = −1.33, p = 0.185). Among 192 TFBMs surveyed, 184
were found not to be significantly over-represented, for a specificity
exceeding 90%. Thus, even amidst noisy in vivo pathology, TELiS
can accurately detect physiologically relevant transcription factor
activity.
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Performance relative to alternative approaches
To evaluate the statistical approach underlying TELiS, we compared
results of its population-based z-test [Equation (1)], with the find-
ings produced by a single-sample or two-sample t-test (the latter
equivalent to a one-way analysis of variance) (Miller, 1986). The
single-sample t-test is similar to the z-test in comparing the preval-
ence of TFBMs in up-regulated promoters with that of the sampling
frame as a whole, but the t-test treats the population sampling vari-
ance as an unknown quantity that must be inferred from the sample
data (i.e. from the D differentially expressing promoters rather than
the P promoters in the sampling frame). As shown in Table 1, the
single-sample t-test yielded considerably larger p-values than the
z-test, and was therefore unable to identify glucocorticoid signaling
in the glucocorticoid stimulation study or IRF and NF-κB activation
in the HIV study. A 2-sample t-test comparing TFBM prevalence in
up-regulated versus unregulated promoters also failed to detect each
of those signals. The t-test’s poor sensitivity stemmed from the fact
that the sampling variability of TFBM prevalence in the D differ-
entially expressing promoters was not representative of that in the
population as a whole (in Table 1, compare SD and SE values for
1- and 2-sample t-tests with the corresponding value for the z-test).
Sample standard deviations over-estimated their population values
by 2–4-fold, leading to inflated standard errors and loss of sensitivity
(i.e. increased p-values).

Frequency data are often analyzed under the assumption of a Pois-
son distribution (Santner and Duffy, 1989), so we compared the
performance of a single-sample Poisson analysis with that of the
z-test. In both the glucocorticoid and HIV studies, single-sample
Poisson tests identified more TFBMs as being significantly over-
represented. This difference appears to stem from increased false
positive error by the Poisson analysis rather than increased sensitiv-
ity. In Monte Carlo studies carried out to estimate FDR �p values,
Poisson analyses consistently yielded Type I error rates exceeding the
nominal p-value (e.g. Table 2). These errors stemmed from the fact
that observed TFBM frequency distributions showed greater variance
than assumed by the Poisson distribution (variance = µt), leading
Poisson analyses to underestimate the true sampling variability. For
example, in the frequency data analyzed in Table 2, 98% of TFBMs
showed a population variance greater than µt , with 96% showing
significant over-dispersion at p < 0.01 [Fisher’s χ2-test of Poisson
fit (Santner and Duffy, 1989)]. Similar results emerged for all com-
binations of sample size, promoter length and scan stringency. In
contrast, the z-test accurately controlled Type I errors in all Monte
Carlo studies (Table 2) because it utilizes the empirically correct
variance. The z-test is therefore recommended as the primary test of
TFBM differential representation. However, for those who wish to
use a Poisson-based analysis, the statistical output includes a com-
parison of the empirical and assumed variance to users can assess
the Poisson approach for a particular TFBM.

Optimizing analytic sensitivity
The analyses reported above were based on default settings for
TELiS: analysis of 300 bases upstream of the TSS using a Mat-
Inspector stringency of 0.90. These defaults were derived from a set
of parametric studies examining the effects of alternative stringen-
cies (0.80, 0.90, 0.95) and promoter lengths (300 600 or 1200 bases
adjacent to the transcription start site). As summarized in Figure 2A,
analyses of short promoter sequences (300 bases) with moderate
stringency (0.90) generally provided optimal signal detection.

Table 2. False positive error rates for single-sample z-test and Poisson testa

Sample size Nominal p-value

0.01 0.001 0.0001

z-test Poisson z-test Poisson z-test Poisson

10 0.0145 0.0450 0.0041 0.0210 0.0021 0.0122
30 0.0130 0.0488 0.0030 0.0221 0.0014 0.0127

100 0.0111 0.0510 0.0022 0.0229 0.0008 0.0130
300 0.0099 0.0514 0.0015 0.0224 0.0004 0.0125

1000 0.0072 0.0469 0.0007 0.0201 0.0001 0.0111
3000 0.0029 0.0333 0.0001 0.0134 0.0000 0.0074

aTable entries give the fraction of 192 TFBMs identified as significantly over- or under-
represented at each nominal p-value, averaged over 100 000 random samples (without
replacement) of the size indicated in column 1. Displayed results are based on data from
low-stringency (0.80) scanning of 1200-base human promoter sequences. Similar results
emerged in analyses of data from other species, scan stringencies and promoter lengths.

Analyses using longer sequences or lower stringency produced
poorer signal-to-noise ratios due to increased non-specific detection
events. High-stringency analyses (0.95) produced enhanced signal-
to-noise ratios, but sometimes yielded no results at all with short
promoter sequences (e.g. IRF1 Figure 2B). These results suggest
that long promoter sequences (1200 bases) should be utilized when
high-stringency analyses are required. Power analyses (Figure 2C)
showed that sample sizes of D > 20 differentially expressed genes
were generally sufficient to yield statistically significant results.

DISCUSSION
Transcription Element Listening System combines real-time data
on transcriptional dynamics with a stored database of genomic pro-
moter characteristics to identify transcription factors driving global
changes in gene expression. The validation studies reported above
show that this approach can successfully detect transcription factor
activation in both well-defined experimental systems and complex
in vivo pathology. The core bioinformatic resource supporting these
inferences is the TELiS database—a collection of sampling frames
that store information on the prevalence of each TFBM in the pro-
moters of all genes assayed by a given microarray. These sampling
frames reduce solution times by pre-solving the most computation-
ally intensive aspect of the reverse inference problem—scanning
large nucleotide sequences for multiple TFBMs. They also establish
the conceptual population required for the most sensitive statistical
analysis—a z-test. The only input required from the user is a list of
differentially expressed genes and the microarray platform used to
find them. Given this combination of simple input, rapid results and
sensitive detection, the TELiS database search tool should consid-
erably increase the use of reverse-inference analyses to define the
transcription control pathways driving gene expression dynamics.

A key advance for reverse inference is the development of
an efficient statistical framework for detecting TFBMs that are
over-represented among co-regulated genes. Conventional inferen-
tial statistics such as the t-test fail in this task because they attempt
to estimate the sampling variability in the population of all genes
from the sampling variability in the subset of differentially expressed
genes. However, the prevalence of TFBMs varies by 2–4-fold more
among activated promoters than it does in the population as a whole,
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Fig. 2. Optimizing detection sensitivity. Promoter size and scan stringency were parametrically varied to identify optimal settings for detection of interferon
responsive elements in promoters of 105 genes up-regulated in HIV-infected thymocytes. (A) For the low-stringency ISRE motif (matrix V$ISRE_01),
signal-to-noise ratios consistently increased as stringency was elevated and promoter size decreased. (B) For the high stringency IRF1 matrix (V$IRF1_01),
signal-to-noise ratios also increased as promoter sizes were reduced in low- and intermediate-stringency analyses (mat_sim = 0.80 and 0.90). However, high
stringency analyses (0.95) failed to identify any IRF1 motifs in all but the longest promoter sequences (1200 bases). Similar results emerged from analyses
of glucocorticoid response (V$GRE_C) in hydrocortisone-stimulated leukocytes (data not shown). (C) To define the number of genes required to detect
over-represented TFBMs, random samples of varying size were drawn from the set of all genes over-expressed in the HIV study and analyzed using default
parameters (300 bases, stringency 0.90). The resulting empirical power curve (defined by the mean ± standard error of resulting z-test statistics) indicated that
at least 20 genes were required to yield consistently significant results. Similar results emerged from analyses of other inflammation-related motifs in the HIV
study and glucocorticoid response elements in the hydrocortisone study (data not shown).

resulting in inflated p-values and failure to detect over-represented
motifs even when they are known to exist. Population-based z-tests
are generally more sensitive, but typically not feasible because the
population mean and standard deviation are unknown (Miller, 1986).
Fortunately, the TELiS database provides exactly the population
parameters required to support a z-test because it is based on an
exhaustive census of promoters. As a result, this key data resource
fundamentally transforms the analytic approach to yield qualitative
improvements in signal detection.

In object-oriented programming, a ‘listener’ passively monitors
an ongoing process and activates itself in response to a predefined
condition. TELiS represents each transcription factor as a listener that
scans induced promoters for variations in the incidence of its signa-
ture TFBM. Listeners ‘call out’ their statistical confidence in their
own differential representation, and a system-level referee aggregates
those calls into a set of inferences about signaling pathways driving
observed changes in gene expression. The validation studies reported
here show that this approach can detect transcription factor activation
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in cases where other statistical approaches fail. However, the statist-
ical component of the analysis depends crucially on access to a full
census of promoter sequences. TELiS is currently implemented for
human, mouse and rat genomes assayed by Affymetrix GeneChips,
and it can easily be extended to other genomes and assay systems
such as SAGE or proteomic arrays by development of appropriate
sampling frames. Some difficult problems remain to be addressed,
including combinatorial effects of multiple transcription factors
(Wagner, 1999; Carey and Smale, 2000; Holmes and Bruno, 2000;
Chiang et al., 2001; Michelson, 2002) and more refined mapping of
promoter elements. However, the development of a simple, fast and
sensitive system for monitoring upstream transcription control path-
ways will help advance gene expression analysis beyond a descriptive
mode to provide a causal understanding of genome dynamics.
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