Control of sleep in mammals Ronald McGregor and Jerome Siegel Sleep in most mammals, including humans, consists of rapid eye movement (REM) and nonREM phases. Deprivation of sleep per se or of REM sleep results in a "rebound" of the deprived states, but the amount lost is not completely recovered. Studies, mostly conducted in rodents and cats, show that neurons that are active during non REM sleep are scattered in groups from the basal forebrain to the medulla. By contrast, the pons contains neurons that are active during REM sleep and indeed this area is sufficient for REM sleep generation ⁵. regions 9,22-24. ## Circadian control of sleep The suprachiasmatic nucleus (SCN), which is the major synchronizer of 24h rhythms in mammals, has a potent effect on sleep states¹⁰. In humans, the SCN regulates a circadian alerting signal that counteracts sleepiness as the day progresses ^{11,12}. When this alerting influence subsides, the nonREM-REM cycle ensues. The circadian rhythm also affects the relationship between REM and nonREM sleep, with the duration and intensity of REM sleep periods increasing at the end of the night. Light acts through the retino-hypothalamic melanopsin system to entrain the circadian rhythm to the solar cycle ¹³. ## Sleep pathologies and current treatements | Disorder | Clinical features | Underlying deficit | Common treatments | |---------------------------|---|--|---| | Insomnia | Inability to fall
asleep; feelings of
inadequate sleep
(not shorted sleep) | Unknown in most
cases; rarely, brain
lesion. | Behavior
modification | | Sleep apnea | Interrupted,
obstructed
breathing,
causing hypoxia | Small airways and
reduced tone in
airway muscles
during sleep | Continuous Positive
Airway Pressure
(CPAP) which is
delivered through
a mask | | REM behavior
disorder | Acting out of
dreams; injury
during sleep | Brainstem
damage | Clonazepam | | Periodic leg
movements | Regular twitches,
usually of the legs | Unknown;
potentially a
brainstem
abnormality? | Benzodiazepines;
dopamine agonists | | Narcolepsy | Sleepiness;
cataplexy | Loss of hypocretin
neurons, increased
number of histamine
neurons | Stimulants for
sleepiness;
antidepressants or
norardrenergic
agonists for cataplexy | ## Why we sleep There is little agreement on the functional role of sleep states ⁶⁻⁹. Daily sleep duration varies tremendously across mammalian species, ranging from 2 to 20 hours. The variation in duration is not strongly correlated with brain size or brain-body weight ratio, but is linked to diet, with herbivores sleeping the least and carnivores sleeping the most⁶. This pattern is consistent with an adaptative role for sleep in aquiring food and conserving energy. Abbreviations: AH, anterior hypothalamus; DR, dorsal raphe; EEG, electroencephalogram; EMG, electromyogram; GABA, gamma-aminobutyric acid; gr, gracile fasciculus; Hcrt, hypocretin (orexin); His, histamine; IMM, intermedio-medial nucleus; IO, inferior olive; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; LSp, lateral spinal nucleus; MCH, melanin concentrating hormone; MIA, medullary inhibitory area; NB, nucleus basalis; NTS, nucleus of the solitary tract; PaR, pararubral nucleus; PGO, ponto-geniculo-occipital; PPT, pedunculopontine tegmental nucleus; PZ, parafacial nucleus; R, red nucleus; SCN, suprachiasmatic nucleus; vIPAG, ventrolateral periaqueductal grey; 7N, seventh nerve nucleus.