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Pleasure, addiction, and hypocretin (orexin)
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Abstract

The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of
human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demon-
strated that these neurons were not simply linked to waking. Rather these neurons were active during plea-
surable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice,
rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities
and decreased release, to the levels seen in sleep, during pain.We found that human heroin addicts have, on
average, an increase of 54% in the number of detectable Hcrt neurons compared to “control” human brains
and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice,
chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in
the mouse allowed us to determine the specificity, dose response relations, time course of the change in the
number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neu-
rogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse
brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive
drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in
which the peptide has been eliminated are resistant to addiction. These findings are consistent with the
concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use
disorders.

ANATOMY

The hypocretin (Hcrt)/orexin peptides were discovered
by two independent groups in 1998 (De Lecea et al.,
1998; Sakurai et al., 1998; Siegel et al., 2001). The name
hypocretin was created because of the hypothalamic
localization of all somas containing the peptides and
the resemblance of the peptides to secretin (De Lecea
et al., 1998). The name orexin was selected because of
the hypothesis that these peptides might drive appetite
(Sakurai et al., 1998), since early work had shown that
damage to the lateral hypothalamus produces anorexia,
whereas damage to the medial hypothalamus produces
hyperphagia and obesity (Anand and Brobeck, 1951;
Teitelbaum and Epstein, 1962). Although the Hcrt

peptides are often erroneously described as being in
the “lateral” hypothalamus, these neurons are in fact pre-
sent through the medial-lateral extent of the hypothala-
mus. An equal number of Hcrt neurons are present
medial and lateral to the fornix, a structure used to define
the boundary between the medial and lateral hypotha-
lamus. Mice, rats, and humans all have Hcrt neurons
throughout the medial-lateral extent of the hypothalamus
(Peyron et al., 1998; Thannickal et al., 2000a,b;
McGregor et al., 2011). Hcrt neurons are also present
in the zona incerta in primates and other species
(Bhagwandin et al., 2011; Dell et al., 2012, 2013,
2016a,b,c; Olateju et al., 2017; Pillay et al., 2017). In
the rostro-caudal dimension, Hcrt neurons are present
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in the tuberal and mamillary regions of the hypothala-
mus, and though the majority of these neurons are
located dorsally to the fornix there are some neuronal
somas ventral to this structure. Throughout their distribu-
tion, Hcrt neurons are intermingled with many other cell
types, not forming a dense homogeneous nucleus. From
their hypothalamic location they send extensive projec-
tions within the hypothalamus and to the rest of the neur-
axis, from the spinal cord to the cerebral cortex (Peyron
et al., 1998; Chen et al., 1999; Date et al., 1999; Horvath
et al., 1999; van den Pol, 1999). Hcrt signaling is con-
veyed through two G-protein-coupled receptors
(HcrtR1 and, HcrtR2) with a range of distribution that
overlaps that of Hcrt fibers (Marcus et al., 2001;
Kukkonen and Leonard, 2014). Phylogenetic studies
have shown a high degree of receptor homology between
different species indicating that this system is evolution-
ary conserved (Ammoun et al., 2003). Activation of
these receptors by Hcrts has short-term effects like
depolarization and increase in neuronal firing rate and
long-term effects including modulation of cell plasticity
(Sakurai et al., 1998; Smart et al., 1999; Eriksson et al.,
2001). Hcrt neurons respond to Hcrt peptides directly via
the HcrtR2 or indirectly (via HcrtR1) through the release
of glutamate (Li et al., 2002; Yamanaka et al., 2010).

Hcrt LINK TO NARCOLEPSY

The development of a Hcrt peptide knockout mouse, in
which the neurons normally containing hypocretin are
present (identified by the cotransmitters dynorphin and
neuronal activity regulated pentraxin (Narp) (Chou
et al., 2001; Blouin et al., 2005; Crocker et al., 2005),
but the Hcrt peptide itself is not (Siegel, 2004; Blouin
et al., 2005; Crocker et al., 2005), produced the dis-
appointing observation that these animals were not
anorexic, leading Chemelli et al. (1999) to use video
observation to determine if there were any other abnor-
malities in their behavior. Theymade the striking obser-
vation that these mice showed sudden movement
arrests. Their further work demonstrated that these were
not seizures or losses of consciousness, but rather had
electroencephalographic and electromyographic signs
of waking, resembling those of cataplexy in human nar-
coleptics. This led to the discovery that there was a 90%
loss of Hcrt neurons in human narcoleptics, amid signs
of prior hypothalamic inflammation (Peyron et al.,
2000; Thannickal et al., 2000a,b, 2003). This was the
first indication of a neuroanatomical abnormality in
human narcoleptics, although we had previously identi-
fied an abnormality in genetically narcoleptic dogs
(Siegel et al., 1999). These dogs have a mutation that dis-
rupts the function of the HcrtR2 (Lin et al., 1999). We
found that they had elevated levels of axonal degeneration

and reactive neuronal somata, an indicator of neuronal
pathology, in a number of subcortical structures. These
degenerative changes precede or coincide with symptom
onset. In very rare cases, human narcolepsy can be caused
by an Hcrt mutation, impairing peptide trafficking and
processing (Peyron et al., 2000).

Nearly all human narcolepsy appears to be linked to
an autoimmune process that causes destruction of Hcrt
neurons (Scammell, 2006). This autoimmune hypothesis
stems from the discovery that nearly all (�95%) of all
human narcoleptics have an HLA immune subtype
(DQB1*0602) present in only about 25% of the general
population (Honda et al., 1984;Mignot et al., 2001). This
hypothesis received further support from the finding that
cases of narcolepsy increased during the H1N1 influenza
epidemic in individuals immunized for the virus
(Dauvilliers et al., 2010) and in those who contracted
H1N1 without immunization (Han et al., 2011).

HYPOCRETIN, REWARD, AND OPIOIDS

We (Kiyashchenko et al., 2002; Mileykovskiy et al.,
2005; McGregor et al., 2011; Wu et al., 2011a,b) and
others (Nestler et al., 2002; Georgescu et al., 2003;
Harris et al., 2005; Boutrel and De Lecea, 2008;
Borgland et al., 2009; Aston-Jones et al., 2010; Nestler,
2013; Baimel et al., 2015; Hassani et al., 2016; James
et al., 2017) have demonstrated that increased neuronal dis-
charge in Hcrt neurons is linked to the performance of
rewarded tasks inwild-type (WT)mice, rats, cats, anddogs.

Mice in which the Hcrt peptide is genetically knocked
out (Hcrt-KO) learn to bar press for food or water as
quickly as theirWT littermates in the light phase and will
respond as well as WT on fixed ratio tasks requiring rel-
atively low effort. This indicates that they experience the
rewarding properties of these natural reinforcers. How-
ever, when the effort to obtain these rewards is increased
in a progressive ratio, the mice invariably stop bar press-
ing before the end of the 2 h test period, whereas their
WT littermates continue until the end of the session
(Fig. 22.1). The Hcrt-KO mice never showed cataplexy
during the positive reinforcement-tests, but often fell
asleep as the amount of work required to receive the
reward (progressive ratio) increased. However, surpris-
ingly, the KOmice were unimpaired relative toWTmice
when working for a positive reward during the dark
phase (Fig. 22.1E). This indicates that Hcrt peptides play
a critical role in mediating motivated behaviors during
the natural “sleep time” in these animals (McGregor
et al., 2011).

These behavioral results find striking parallels with
the activity of Hcrt neurons. Mirroring the behavioral
deficits seen in Hcrt-KO animals, we found that in WT
mice, expression of the immediate early gene cFos in
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Hcrt neurons, an indirect indicator of neuronal activa-
tion, occurs only in the light phasewhenworking for pos-
itive reinforcement in a progressive ratio task. In a second
set of experiments, we observed that Hcrt-KOmice were
unimpaired relative to WTwhen working to avoid a foot
shock in a progressive ratio schedule during the light or
dark phase. Analysis of Hcrt activation (cFos) under
these conditions revealed that these neurons were not
activated during the performance of this task. Further-
more, cFos was not expressed in Hcrt neurons above
baseline when expected or unexpected rewards were pre-
sented, or when given or expecting an unavoidable foot

shock, even though these conditions elicit maximal
electroencephalogram (EEG) arousal (Figs. 22.2–22.3).
Together these results from behavioral and anatomical
studies point toward an emotional specificity in the
recruitment of Hcrt neurons (McGregor et al., 2011;
Blouin et al., 2013).

Interestingly when light was turned off, cFos was not
expressed in Hcrt neurons beyond control levels in the
light phase during positive reinforcement, indicating a
very specific role of light in Hcrt’s involvement in
reinforcement (McGregor et al., 2011; Blouin et al.,
2013). This finding is consistent with the lack of
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Fig. 22.1. Operant performance of WT and KO mice on progressive ratio responding for food or water reinforcement paradigm.

Hcrt-KO mice are unable to sustain bar pressing for food or water in the light phase, in contrast to littermate WT mice. Repre-

sentative cumulative records of the performance of a WT animal (A, food, 2817 total presses; B, water, 2494 total presses)

and an Hcrt-KO animal (C, food, 456 total presses; D, water, 164 total presses) responding for positive reinforcers. The downward

pips on the cumulative record denote food or water deliveries. The Hcrt-KO mouse sessions were terminated when they ceased

pressing the lever for 15min. Hcrt-KOs are unimpaired on the same task in the dark phase (E). Redrawn from McGregor R, Wu

M-F, Barber G, Ramanathan L, Siegel JM (2011). Highly specific role of hypocretin (orexin) neurons: differential activation as a

function of diurnal phase, operant reinforcement vs. operant avoidance and light level. J Neurosci 31: 15455–15467.
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Fig. 22.2. Distribution of Hcrt and cFos/Hcrt neurons in the hypothalamus ofWTmice under different behavioral conditions. Hcrt

neurons express cFos during a foodmotivated task in the light phase. Neither food nor shock avoidance tasks increase cFos expres-

sion in the dark phase. (A) Diagrams of coronal sections of the hypothalamus stained for Hcrt and cFos of six animals each under

one of six different experimental conditions during the light and the dark phase: L1, PR food, light phase; L2, shock avoidance, light

phase; L3, chamber control, light phase; D1, PR food, dark phase; D2, shock avoidance, dark phase; D3, chamber control, dark

phase. Red dots indicate double-labeled cFos/Hcrt neurons; blue triangles correspond to Hcrt neurons. Fx, Fornix; 3V, third ven-
tricle. Scale bar, 150 mm. (B) Photomicrographs of the same hypothalamic region in a section processed for Hcrt and cFos. LH, Lat-

eral hypothalamus; MH, medial hypothalamus. Scale bar, 150 mm. The rectangular region in the LH is magnified in the insert at the

lower left. Scale bar, 20 mm. The double-labeled neurons (red arrows) show the characteristic black nucleus due to the presence of
cFos protein and a brown precipitate in the cytoplasm, indicating their hypocretinergic nature. These cells are easily distinguishable

from single-labeled hypocretin neurons (blue arrows) and single-labeled cFos cells (black arrowheads). Redrawn fromMcGregor R,

WuM-F, Barber G, Ramanathan L, Siegel JM (2011). Highly specific role of hypocretin (orexin) neurons: differential activation as a

function of diurnal phase, operant reinforcement vs. operant avoidance and light level. J Neurosci 31: 15455–15467.
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light-induced arousal in human narcoleptics (Hajek et al.,
1989), reported prior to the discovery of Hcrt, in contrast
to the arousing effects of light in nonnarcoleptics.

It has been previously reported that there is a dichot-
omy in the functions of the Hcrt neuronal population,
with the medial group related to arousal and the lateral
group to reward (Harris and Aston-Jones, 2006). In
our studies we did not observe a restricted distribution
in the double-labeled Hcrt/cFos neurons. Rather they
were seen homogeneously throughout the medial-lateral
extent of the Hcrt field.

Recording of Hcrt neurons in freely moving rats
showed that they discharged maximally during explora-
tion, grooming, and eating, but ceased discharge during
aversive stimulation in waking (Mileykovskiy et al.,
2005); all changes consistent with our work on reinforce-
ment in mice (McGregor et al., 2011). They reduced dis-
charge in non-REM sleep with a low level of activity in
REM sleep (Fig. 22.4).

HCRT, DOPAMINE, AND ADDICTION

Somewhat similar to Hcrt neurons, dopamine neurons,
particularly those located in the ventral tegmental area
(VTA), have long been implicated in reinforcement in
general and addiction in particular (Beitner-Johnson
et al., 1992, 1993; Mignot et al., 1995; Schilstrom et al.,
1998; Sarti et al., 2002; Meye et al., 2012; Farahimanesh
et al., 2017). Hcrt and dopamine are evolutionarily linked
from both a neurochemical and anatomical perspective
(Stefano and Kream, 2007). VTA plasticity associated

with drug rewards requires functional Hcrt receptors
(Baimel et al., 2015). The levels of dopamine and its
major metabolites in the nucleus accumbens are mark-
edly increased by the microinjection of Hcrts into
the VTA. Hcrt neurons project strongly to the VTA,
where the peptides appear to act via volume conduction
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Fig. 22.3. Percentage of Hcrt neurons expressing cFos in the hypothalamus of WT mice under different behavioral conditions.

Activation ofHcrt neurons wasmaximal when bar pressing for food in the light phase, but not during shock avoidance. Comparison
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(Del Cid-Pellitero and Garzon, 2014), and to the nucleus
accumbens and paraventricular nucleus of the thalamus
(Peyron et al., 1998). The paraventricular nucleus also
projects directly to the nucleus accumbens (Zhu et al.,
2016). Thus via its direct and indirect projections, Hcrt
can strongly modulate circuits implicated in addiction
(Peyron et al., 1998; Sim-Selley et al., 2011; Ho and
Berridge, 2013; Zhu et al., 2016, Chen et al., 2006;
Anderson et al., 2017).

Hcrt and opioids

An in vitro slice study found that opioids decrease the
activity of Hcrt neurons and that blockade of m-opioid
receptors enhances the activity of Hcrt neurons.

Morphine pretreatment inhibits subsequent excitatory
responses to Hcrt in Hcrt neurons (Li and van den Pol,
2008). However, our current in vivo data (Fig. 22.5)
(Thannickal et al., 2018) shows that systemic administra-
tion of morphine greatly increases Hcrt unit activity in
intact rats. The effects of opioid agonists can be exerted
not only in plasma membrane receptors and endosomes
but also in the Golgi apparatus (Stoeber et al., 2018), sug-
gesting a possible pathway for the alteration of Hcrt neu-
ronal size after chronic opioid exposure that we have
reported (Thannickal et al., 2000a,b, 2018) and for recep-
tor expression (Cai et al., 2019). A large percentage of
Hcrt cells also release glutamate (Torrealba et al.,
2003), trigger glutamate release from adjacent cells. They
also contain corelease dynorphin (Li and Van Den Pol,
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2006;Muschamp et al., 2014), a member of the opioid
peptide family that preferentially binds to the kappa opi-
oid receptor (KOR) (Schwarzer, 2009). These two neuro-
peptides have opposing roles in reward related behaviors
such as cocaine and alcohol self-administration, cocaine
seeking, impulsivity, and brain stimulation reward
(Matzeu and Martin-Fardon, 2018; Anderson et al.,
2018). The VTA firing rate is increased by Hcrt and
decreased by dynorphin, but bath coapplication of both
peptides resulted in no net changes in neuronal firing
(Muschamp et al., 2014). HcrtR1 and KOR can form
receptor heterodimers, altering signal transduction and
second messenger activation including increased

protein kinase A activity and intracellular cAMP levels
(Chen et al., 2015). Hcrt neurons also contain neuronal
activity regulated pentraxin, involved in aggregating
AMPA receptors and thought to have a role in addiction
(Blouin et al., 2005; Crocker et al., 2005).

Human studies

In another study, we found that Hcrt is released in the
brain of nonaddict humans when they are engaged in
enjoyable tasks, but not when they are aroused by pain
or feeling sad (Fig. 22.6) (Blouin et al., 2013). Ele-
vating Hcrt production by self-administration of opioids
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(Thannickal et al., 2018) creates a positive mental state.
A negative affect is correlated with reduced administra-
tion of opioids and a diminishing rate of Hcrt production
(C.D.C, 2017). Humans with narcolepsy have greatly
elevated levels of depression (Ponz et al., 2010b; Lee
et al., 2016; Nordstrand et al., 2019), with similar
changes in animal models of narcolepsy (Lutter et al.,
2008; James et al., 2018), i.e., both a low rate of Hcrt
production (in narcoleptics) and a diminishing rate of
Hcrt production (in addicts attempting withdrawal)
(Thannickal et al., 2018) are correlated with depression.
Similarly it has been shown that humans who have
attempted suicide have lower levels of cerebrospinal Hcrt
(Brundin et al., 2007, 2009). Circadian, sex-related dif-
ferences, and brain region-specific changes in Hcrt sys-
tem functioning have been reported in relation to human
depression (Lu et al., 2017).

We have shown that Parkinson’s disease patients
have a considerable loss of Hcrt neurons (Fronczek
et al., 2007; Thannickal et al., 2007, 2008), although
not to the extent seen in narcoleptics. This loss may help
explain the symptoms that Parkinson’s patients have in
common with narcoleptics including daytime sleep
attacks, nocturnal insomnia, hallucinations and depres-
sion, keeping inmind themuchmore extensive neuronal
loss and symptoms in Parkinson’s.

From a medical standpoint, the most critical issue in
opiate addicts is the inability of many addicts to success-
fully withdraw from opioid use (Li and van den Pol,
2008; Editors, 2016; C.D.C, 2017; Chang et al., 2017;
Ostling et al., 2018). The difficulty of withdrawal for
addicts is not principally caused by the seeking of a plea-
surable “high.” Rather it is seeking relief from the symp-
toms induced by withdrawal. These include insomnia
(Valentino and Volkow, 2020), anxiety, irritability, hot
flashes/chills, sweating, restlessness, and hyperalgesia.
Acute symptoms typically peak24–48h afterwithdrawing
from short-acting opioids (e.g., heroin or oxycodone).
These acute symptoms may be followed by anhedonia,
fatigue, anorexia, depression, and insomnia (Christie,
2008; Shi et al., 2009; Del Bello et al., 2013; Lutz et al.,
2014; Zhu et al., 2016), effects that persist for weeks to
months or years in humans (Sigmon et al., 2012). These
short- and long-term effects drive most subjects who have
attempted withdrawal to relapse within 1 year (McLellan
et al., 2000; C.D.C, 2017; Volkow et al., 2018), even after
medically supervised detoxification and pharmacological
intervention.

HUMAN NARCOLEPTICS RARELY
GET ADDICTED

It has long been noted that narcoleptics, whohave an aver-
age 90% loss ofHcrt neurons (Thannickal et al., 2000a,b),
show little, if any, evidence of drug abuse, addiction or

overdose (Borgland et al., 2009; Guilleminault and
Cao, 2011; Brown and Guilleminault, 2011; James et al.,
2017), despite their daily prescribed use of gamma hydro-
xybutyrate, methylphenidate, and amphetamine. These
drugs reverse the sleepiness and cataplexy of narcolepsy
and are frequently abused in the general population with
considerable loss of life (Harris et al., 2007; Borgland
et al., 2009; Nishino and Mignot, 2011; Dauvilliers
et al., 2013, 2014; Barateau et al., 2016; Darke et al.,
2019; Jalal et al., 2018; Turner et al., 2018). Yet dose esca-
lation and overdose are virtually nonexistent in narcolep-
tics (Galloway et al., 1997; Aston-Jones et al., 2010;
Bayard and Dauvilliers, 2013; Baimel et al., 2015).
Human narcoleptics have been shown to have a greatly
reduced reward activation of the VTA, amygdala, and
accumbens (Ponz et al., 2010a,b) and altered processing
of humor in the hypothalamus and amygdala (Schwartz
et al., 2007). The lack of abuse in human narcoleptics
is consistent with the greatly reduced addiction potential
in mice and rats with reduced Hcrt function (Sharf et al.,
2010; Tabaeizadeh et al., 2013; Zarepour et al., 2014;
Bentzley and Aston-Jones, 2015; Bali et al., 2015;
Sadeghi et al., 2016; Sadeghzadeh et al., 2016; Guo
et al., 2016; Farahimanesh et al., 2017; Alizamini et al.,
2017; Assar et al., 2019; Azizbeigi and Haghparast,
2019; Azizbeigi et al., 2019; Pourhamzeh et al., 2019;
Farzinpour et al., 2019; Shirazy et al., 2020; Zarrabian
et al., 2020). It is also consistent with our recent finding
of the converse phenomenon, greatly increased Hcrt cell
number in human heroin addicts (Fig. 22.7) (Thannickal
et al., 2018). Whereas a reduced number of Hcrt cells in
narcoleptics is correlated with a greatly reduced addiction
susceptibility in human and mouse narcoleptics, a greatly
increased number of detected Hcrt-producing cells is eli-
cited by opioid administration in humans and mice
(Thannickal et al., 2018).

Changes in the Hcrt system
produced by opioids

Morphine had to be given for at least 2 weeks to produce
a significant change in the number of Hcrt cells in mice,
whereas cell size reduction was seen as soon as 72h after
subcutaneous implant of a morphine tablet (Thannickal
et al., 2018). These changes in Hcrt neuron number and
size after morphine were accompanied by an increased
expression of preprohypocretin mRNA (Fig. 22.8). The
opioid antagonist naltrexone (Narayanan et al., 2004;
Skoubis et al., 2005; Shoblock and Maidment, 2006,
2007) given alone on the same dose schedule asmorphine
did not change the number of Hcrt neurons (data not
shown) indicating that the maintenance of baseline num-
ber of Hcrt neurons does not require m-opioid receptor
activation. The increased number of Hcrt neurons per-
sisted for at least 4 weeks after discontinuation of 14 days
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morphine treatment in mice, whereas the decrease in Hcrt
cell size lasted for 2 weeks. Our data suggests that the
increase may last much longer in human addicts than in
mice. One of our addicts had 154% of the number of Hcrt
neurons in control brains, even though he had not abused
opioids for at least 3 years before his death (Thannickal
et al., 2018). Self-administration has been shown to pro-
duce longer-lasting behavioral changes compared to pas-
sive, involuntary administration (Chen et al., 2006;
McNamara et al., 2010; Picetti et al., 2012; Smith and
Aston-Jones, 2012; James et al., 2013), suggesting that
both species and administration differences may underlie
these anatomical changes.

MORPHINE DOES NOT PRODUCE
“NEW” HCRT NEURONS

Wedetermined that the increase in the number of detected
Hcrt cells was not due to neurogenesis. Both BrdU and
doublecortin labeling indicated that no new neurons were
produced by morphine (see fig. 4 in (Thannickal et al.,
2018)). In a further study, we explored the issue of where
the “newly visible”Hcrt neurons are coming from, by giv-
ing colchicine to drug naïve mice. Colchicine blocks axo-
nal transport, thereby causing peptide to accumulate in
the cell body. We found that this manipulation increased
the number of “detectable” Hcrt cells in mice by about
44% (Fig. 22.9A) (McGregor et al., 2017), similar to
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t ¼ 2.78, df¼ 10 (t-test)]. (C) Neurolucida mapping illustrates the distribution and increased number of hypocretin cells in brain

tissue from heroin addicts relative to control subjects. Representative counts are given at three anterior–posterior positions: OT,
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in brain tissue from control individuals and heroin addicts is shown. Hcrt neurons are smaller and more numerous in the addicts.
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Fig. 22.8. Effect ofmorphine administration on preprohypocre-

tinmRNAexpression inmousebrain.Anescalating dose ofmor-

phine, starting at 100mg/kg, was given for 14 days to wild-type

mice who were compared to saline injected littermates (*P <
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the amount of increase seen inmice aftermorphine, i.e., as
many as 44% of the neurons capable of producing Hcrt in
mice do not produce it at detectable levels under
“baseline” conditions. Fig. 22.9B shows that colchicine
does not have any effect on the number of melanin-
concentrating hormone neurons, a peptide of similar size,
whose neurons are intermixed with Hcrt cells. Fig. 22.9C
shows a representative hypothalamic section immu-
nostained for Hcrt in a saline (top) and colchicine
(bottom)-treated animal.

INSOMNIA IS A MAJOR CAUSE OF
OPIOID WITHDRAWAL SYMPTOMS,

LEADING TO RELAPSE

Increased nocturnal wakefulness is a well-documented
effect of opioid withdrawal. Despite progress in treating
opioid dependence, sleep disturbance remains an almost
universal complaint among withdrawing opioid addicts,
persisting for more than 6 weeks and playing a major
role in relapse. Longer sleep time is a predictor of
increased treatment compliance and better treatment
outcome (Gossop and Bradley, 1984; Beswick et al.,
2003; Lofwall et al., 2013; Lin et al., 2014). Postaddic-
tion insomnia may be mediated, to some extent, by the
increased number of Hcrt-producing neurons, just as the

inability to maintain waking in human narcoleptics is
linked to decreased Hcrt receptor activation (Peyron
et al., 2000; Thannickal et al., 2000a,b; Sharf et al.,
2010; Tabaeizadeh et al., 2013; Zarepour et al., 2014;
Bali et al., 2015; Bentzley and Aston-Jones, 2015; Guo
et al., 2016; Sadeghi et al., 2016; Sadeghzadeh et al.,
2016; Alizamini et al., 2017; Farahimanesh et al., 2017;
Assar et al., 2019; Azizbeigi and Haghparast, 2019;
Azizbeigi et al., 2019; Farzinpour et al., 2019;
Pourhamzeh et al., 2019; Shirazy et al., 2020; Zarrabian
et al., 2020).

CONCLUSION

The loss of Hcrt neurons causes human narcolepsy. In
animal models a clear linkage between the Hcrt system
and working for positive reinforcement has been shown.
In contrast, Hcrt activity is not strongly altered by work-
ing to avoid aversive conditions. A strong circadianmod-
ulation of Hcrt function has been shown in both animals
and humans. In a humanmicrodialysis study, release was
shown to be correlated with pleasurable activities
(Blouin et al., 2013). Changes in Hcrt function have
been linked to depression (Lu et al., 2017; Thannickal
et al., 2018). We found a large increase in the number
of Hcrt-producing neurons in human heroin addicts and
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in mice chronically administered morphine (Thannickal
et al., 2018). James et al. reported a nearly identical
increase in the number of Hcrt-labeled neurons after
chronic cocaine administration in rats (James et al.,
2019), suggesting that the increase in Hcrt number
may be a correlate of other chemical use disorders.
Examining changes in Hcrt anatomy and physiology
may shed light on a wide range of behavioral disorders.

Researchers have typically characterized Hcrt neu-
rons as a key part of awaking system. Thework reviewed
previously suggests that this is an oversimplification.
Rather Hcrt activity is linked to particular types of wak-
ing behavior. In prior work it has been shown that neu-
rons in the classic brainstem “waking arousal” systems
are in fact related to very specific movements that occur
in waking rather than relating simply to the waking state
(Siegel and McGinty, 1976, 1977; Siegel, 1979; Siegel
et al., 1979, 1980, 1983; Siegel and Tomaszewski,
1983). The work on Hcrt neurons suggests that other
waking or sleep-related neurons may similarly have pos-
itive or negative emotional or behavioral roles. Under-
standing the behavioral roles of these neuronal groups
is critical to understanding the waking state itself.
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