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Most human cancers are characterized by genetic instabilities. These instabilities manifest 
themselves as a series of genetic alterations, including discrete mutations and 
chromosomal aberrations. With the human genome deciphered, high-throughput 
technologies are rapidly advancing the field to generate genome-wide gene expression 
and mutation profiles that are highly correlative of biologic and disease phenotypes. While 
recent advancement in comprehensive genomic characterization presents an 
unprecedented opportunity for advancing the treatment of cancer, there are still many 
challenges that need to be overcome before we can fully utilize genomic markers and 
targets for cancer prediction, diagnostics, treatment and prognostics. This review describes 
recent advances in comprehensive genomic characterization at the DNA level, and 
considers some of the challenges that remain for defining the precise genomic portrait of 
tumors. Potential solutions that may help overcome these challenges are also offered.
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Tumors develop through the combined proc-
esses of genetic instability and selection, result-
ing in clonal expansion of cells that have accu-
mulated the most advantageous set of genetic
aberrations. Many types of instability can con-
tribute to neoplastic development, including
point mutations, chromosomal rearrange-
ments, DNA dosage abnormalities (amplifica-
tions or deletions), alteration of microsatellite
sequences and epigenetic changes.

During the 1970s and 1980s, several
genome-wide approaches were developed to
measure these tumor genomic alterations
including loss of heterozygosity (LOH) ana-
lysis and comparative genomic hybridization
(CGH). Advances in genetics and bio-
engineering have refined these techniques
over the past two decades, and the recent
development of multicolor staining-based
cytogenetic techniques such as multicolor
(M)-fluorescence in situ hybridization (FISH)
and spectral karyotyping (SKY) have further
improved the ability to analyze the tumor
genome [1].

Knowledge of genomic aberrations can have
clinical value in diagnosis, treatment and
prognostics in cancer. Four decades ago, the
milestone discovery of Philadelphia chromo-
some (a translocation between chromosome 9
and 22 that fuses the Bcr gene and the Abl
tyrosine kinase gene) led to one of the first
effective targeted therapies for cancer: treat-
ment of chronic myelogenous leukemia
(CML) with the tyrosine kinase inhibitor
imatinib (Gleevec®) [2]. Since then, many
exciting clinical advances have been made,
based on increasing knowledge of the tumor
genome. The completion of the human
genome project now makes it possible to query
the cancer genome systematically in ways that
were hitherto impossible [3,4]. Microarrays
designed to analyze targeted genomic regions
relevant to chronic lymphocytic leukemia have
been produced for use in clinical trials to
determine the relationship between thera-
peutic options and genomic aberrations [5].
The association of genomic aberrations with
prognosis has been found for a variety of
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tumor types, including prostate cancer [6], breast cancer [7],
gastric cancer [8], head and neck cancer [9] and lymphoma
[10,11]. Many more studies are in progress or near completion.
These findings provide a new paradigm for cancer treatment
that is fundamentally guided by genomic characterizations of
the disease [12–16].

In this review, recent technological advances in the characteri-
zation of tumor genomes at the DNA level are surveyed, and
some of the major challenges that remain in defining
genomic markers and targets for cancer prediction, diagnos-
tics, treatment and prognostics are considered. Potential solu-
tions that may overcome these outstanding challenges to
improve the diagnosis and treatment of solid tissue malignancies
will be identified.

Approaches to genomic profiling
Chromosomal aberrations can be analyzed using a variety of
high-throughput genetic and molecular technologies, includ-
ing the analysis of chromosome banding, LOH, CGH, dig-
ital karyotyping [17], FISH, restriction landmark genome
scanning (RLGS) [18], representational difference analysis
(RDA) [19] and statistical inference of chromosomal changes
from gene expression data [20–22]. These analyses enable the
identification of a broad range of chromosomal abnormalities
in cancer.

Comparative genomic hybridization: systematic 
copy-number analysis
CGH was developed to survey gene copy-number abnormalities
(amplifications and deletions) across a whole genome [23]. In a
typical CGH analysis, differentially labeled test (disease) and
reference genomic DNAs are cohybridized to the normal meta-
phase chromosomes to generate fluorescence ratios along the
length of chromosomes that provide a cytogenetic representa-
tion of DNA copy-number variation. CGH was the first effec-
tive approach to scan the entire genome for variations in DNA
content [24,25]. However, chromosome-based CGH has a limi-
ted mapping resolution (∼20 Mb). Array-based CGH is a sec-
ond-generation approach in which fluorescence ratios on
microarrayed DNA elements provide a locus-by-locus measure
of gene copy-number variation [26,27]. Although this approach
can potentially increase mapping resolution, most array CGH
methods have utilized large genomic clones (e.g., bacterial artifi-
cial chromosomes), which limits spatial sensitivity. In addition,
large genomic clones suffer from reduced specificity due to their
inclusion of common repeats (e.g., Alu and long interspersed
nuclear elements), redundant sequences (e.g., low copy repeats,
also known as segmental duplications) and segments of exten-
sive sequence similarity (pseudogenes or paralogous genes) [28].
Recently, several additional higher density tools for CGH anal-
ysis have become available with the completion of the human
genome sequence. These include cDNA array-based CGH
[29,30], oligonucleotide array-based CGH [31,32], tiling array-
based CGH [27] and copy-number analysis using high-density
single nucleotide polymorphism (SNP) microarrays [33–36].

Tiling and SNP array-based approaches have drawn most
attention due to their high resolution. Tiling arrays have the
potential to resolve small (gene level) gains and losses (at a
resolution of ∼40 kb) that might be missed by marker-based
genomic arrays that contain a large number of gaps due to the
distance between the targeted probes [27,37]. In the near future,
it is hoped that the ability to survey copy-number changes at
close to base-pair resolution, using tiling arrays that contain
billions of overlapping probes covering the entire genome, will
be realized. The SNP array-based approach provides the
unique advantage of concurrent CGH and LOH analysis,
which is discussed in further detail later [34,35].

An alternative approach to measure copy-number abnormalities
is digital karyotyping, which was first introduced in 2002 [17].
This method is similar to the serial analysis of gene expression
(SAGE) approach [38], where short sequence tags containing suf-
ficient information of specific genomic loci are first obtained
from the whole genome. These tags are then amplified en masse,
concatenated, cloned, sequenced and computationally ordered in
sequence along each chromosome. Digital enumeration of tag
observations along each chromosome can then be used to
quantitatively evaluate DNA content with high resolution. This
method has been successfully utilized in several studies [39–41],
thereby demonstrating the capacity to identify copy-number
abnormalities at high resolution  [42,43].

Loss of heterozygosity: systematic allelic imbalance analysis
Chromosomal aberrations include segments of allelic imbal-
ance identifiable by LOH at polymorphic loci, which can be
used to identify regions harboring tumor-suppressor genes.
Allelic losses, which are caused by mitotic recombination, gene
conversion or nondisjunction, cannot be detected by CGH
and, thus, require LOH analysis for their identification. This
approach is favored by the Knudson two-hit hypothesis for
hunting the tumor-suppressor genes [44,45]. The discovery of the
first tumor-suppressor gene, RB1 [46], followed the Knudson
two-hit hypothesis that tumor-suppressor genes are inactivated
by a recessive mutation in one allele followed by the loss of the
other wild-type allele, which can be detected by LOH. Tradi-
tionally, polymorphic markers, such as restriction fragment
length polymorphisms (RFLPs) and microsatellite markers,
have been used to detect LOH through allelotypic comparisons
of DNA from a cancer sample and a matched normal
sample [47]. However, this approach is tedious, labor intensive
and requires a large amount of sample DNA, thus allowing
only a modest number of markers to be screened. High-density,
whole-genome allelotyping cannot be readily performed. The
mapping of the human genome has allowed for the identifica-
tion of millions of SNP loci [101], which makes them ideal
markers for various genetic analyzes, including LOH. Due to
their abundance, regular spacing and stability across the genome,
SNPs have significant advantages over RFLPs and micro-
satellite markers as a basis for high-resolution, whole-genome
allelotyping with accurate copy-number measurements. High-
density oligonucleotide arrays have recently been generated to
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support large-scale, high-throughput SNP analysis [48]. It is now
possible to genotype over 100,000 SNP markers using the
Affymetrix Mapping 100K SNP oligonucleotide array (soon to
be 500K). LOH patterns generated by SNP array analysis have a
high degree of concordance with previous microsatellite analyses
of the same cancer samples [49]. Additionally, shared regions of
LOH from SNP arrays can cluster lung cancer samples into sub-
types [50], and distinct patterns of LOH are found to associate
with clinical features in primary breast, bladder, head and neck,
and prostate tumors [35,51–54]. A unique advantage of this SNP
array-based approach is that the intensity of sample hybridiza-
tion to the array probes can also be used to infer copy-number
changes (similar to CGH) [33–35]. This unique feature has been
explored by algorithms implemented in several independent bio-
informatics and statistical software packages, including dChip-
SNP [34] and Copy Number Analysis Tool (Affymetrix) [55]. Use
of these novel analytic tools to analyze data from high-density
SNP arrays now allows the DNA copy-number analyses to be
combined with LOH analysis to distinguish copy-number
gains, copy-number neutral LOH and copy-number losses, to
comprehensively map the configuration of tumor genomes [34].

Cytogenetics-based approaches: old techniques with new twists
Cytogenetics has flourished since the introduction of chromo-
some banding techniques in 1969 [56,57]. One major drawback
of these approaches is the requirement of in vitro culture and

metaphase preparation of the cells of interest, which limits its
application for many studies of solid cancers. Nevertheless,
cytogenetic approaches will always have their place in the
genomic profiling due to their ability to directly visualize
chromosomal abnormalities. More importantly, these cyto-
genetic techniques complement CGH and LOH by providing
information on chromosomal structural rearrangements that are
not resolved by DNA copy-number analyses. For example,
translocations are one of the most common genomic abnormali-
ties in cancer, but they cannot be detected by CGH or LOH [13].
However, an experienced cytogeneticist can readily detect
many forms of chromosomal translocations using classic
cytogenetic techniques, such as chromosome banding tech-
nique (also known as karyotyping). A banding analysis usually
involves blocking cells in mitosis, staining the condensed
chromosomes with Giemsa dye (this dye stains regions of
chromosomes that are rich in the base pairs adenine and thym-
ine, which produces a dark band), and visualization under a
light microscope. Karyotype analysis is performed over
500,000-times per year in the USA and Canada as part of
standard clinical tests for prenatal and postnatal screening, as
well as for the diagnosis of cancers (hematologic malignancies
in particular). However, many cancer cells have complex kary-
otypes that are difficult to interpret (FIGURE 1). Recently, several
new labeling techniques have been introduced in the field of
molecular cytogenetics, including SKY, M-FISH, cross-species

Figure 1. Comprehensive cytogenetic characterization of prostate cancer cell line CL-1. (A) Standard trypsin Giemsa banding technique-based karyotype 
analysis was performed on CL-1 cell line, a fast growing, highly tumorigenic and androgen-independent prostate cancer cell line [61]. (B) Multicolor fluorescence 
in situ hybridization (M-FISH) was performed for the CL1 cells using SpectraVysion assay according to manufacturer’s instructions (Abbot-Vysis, IL, USA). The 
hybridized cells are visualized by fluorescence microscopy using a Zeiss Axiophot with an M-FISH filter configuration. The images are captured with a 
charge-coupled-device camera (Cohu Inc.) and analyzed using telomeric M-FISH software (Applied Imaging Corp., CA, USA). The precise karyotype for the CL-1 
cells was defined by combining the information generated from both G-banding and M-FISH using the ISCN 1995 nomenclature [62]: 68, XX, del(X)(q11), 
der(1)(1;4)(p36;q31), +der(1)(1;6;10)(10pter→10p11.2::1p31–1q21::6p11→6pter), +der(1)t(1;8;10;12)(10pter→10p11.2::1p31→1q21::12q13→q15::8q22→qter), 
der(2)t(2;4)(p23:q31)X2,+der(2)(20::11::2::9),der(3)t(3;10)X2,+der(3)t(3;10)(3p21→q21::10q22→qter),der(4)t(4;6)(p16;q25)X2,+der(5)t(5::19::18)X2,+7,+8,+der(9)
t(1;9)(1pter→1p32::9p13→9qter);der(10)t(3;10)(3qter→q25::10q22→pter), +der(10)t(3;10)X2, +der(11)t(5;11)(5::11q13→qter), iso(12q), +del(12)(q13), 
der(13)t(2;13)(q11.2;p11), +14, der(15)t(5;15)(5::q24→qter)X2, +16, +der(19)t(11;19)(11qter→11q23::19qter→pter), +der(19)t(5;19)(5q33→q13::19q13→p13), 
+der(20)t(6;20)(6::20qter→p11.2)X2, +21, del(22)(13), der(22)[CP5].
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color banding (Rx-FISH) and multicolor chromosome band-
ing. These techniques permit the simultaneous visualization of
all chromosomes in different colors and, thus, considerably
improve the detection of translocations or deletions. For exam-
ple, both SKY and M-FISH use a combinatorial labeling
scheme with spectrally distinguishable fluorochromes. The
chromosome-specific probe pools (chromosome painting
probes) are generated from flow-sorted chromosomes and then
amplified and fluorescently labeled by degenerate oligonucleo-
tide-primed PCR. The comprehensive analysis of complex
chromosomal rearrangements present in tumor karyotypes was
greatly improved through the introduction of these techniques
in 1996 (FIGURE 1) [58–60].

Challenges for genomic studies of cancer
Three major biologic difficulties confront the identification and
eventual translation of genomic markers and targets for cancer
prediction, diagnostics, treatment and prognostics. The first is
the diversity of genetic alterations that can contribute to malig-
nant cell growth. Among these are germline variations that lead
to hereditary cancer predispositions, the acquisition of transform-
ing DNA or RNA sequences from cancer viruses, somatic muta-
tions in the cancer genome and epigenetic mechanisms (such as
DNA methylation or histone modification) that promote onco-
genesis by modifying cancer-related genes. Somatic genomic
alterations, such as point mutations, genomic amplifications or
deletions, loss of allelic heterozygosity and chromosomal trans-
locations, are believed to play a central role in the development of

most solid tumors [63]. All of these mechanisms result in dysregu-
lated expression of oncogenes and tumor-suppressor genes, but
none of the existing genomic techniques can capture all of these
genetic changes in a single analysis (FIGURE 2) [64]. This represents a
major obstacle to the comprehensive analysis of tumor genomes
and their relationship to clinical phenotypes.

The second challenge is the multifactorial nature of oncogenesis
(i.e., the multi-hit model). Most tumors, especially those in
adults, result from an interdependent series of genetic altera-
tions, rather than a single decisive event. This complicates the
task of prediction because a single abnormality may lead to
cancer in some cases (e.g., those in which a complementary
genetic alteration already exists), but not in others (e.g., in cases
where a tumor-suppressor gene is mutated but no oncogene has
been altered). Multifactorial etiology implies that the causal (or
predictive) event is actually a combination of individual events,
any one of which may forecast a benign outcome in isolation,
but the combination of which may forecast malignancy. This
complicates the development of prediction models because any
single alteration is only inconsistently associated with malig-
nancy. Since only certain combinations of complementary
alterations consistently result in cancer, the discovery of predic-
tive combinations is a major objective of analysis. However, the
identification of these etiologic combinations from diverse
streams of genomic data poses a major challenge. For example,
a given genomic abnormality may not be functionally onco-
genic if the damaged gene is not expressed. As a result, DNA
structural analyses might incur noise by forecasting malignant

Figure 2. Detection and mapping of chromosomal abnormalities using different genomic and cytogenetic approaches. ‘+’ and ‘-’ denote effective and 
ineffective methods for the detection of a specific abnormality. 
Banding: Chromosome banding or karyotyping; CGH: Comparative genomic hybridization; DK: Digital karyotyping; LOH: Loss of heterozygosity; 
M-FISH: Multicolor fluorescence in situ hybridization; SKY: Spectral karyotyping.
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cell growth (e.g., based on gene copy-number analyses) when it
does not, in fact, occur (e.g., because transcription factors or
epigenetic influences prevent the expression of the aberrant
gene). In this case, the addition of mRNA indications of gene
expression and alterations in protein concentration would
enhance the predictive significance of that genetic abnormality.
Thus, the etiologic structure of cancer is combinatorial at two
levels: one involving interactions among multiple genes (and/or
biologic pathways) [65,66], and another involving interactions
among multiple levels of analysis for a single gene (DNA struc-
ture, RNA expression and potential post-translational modifi-
cations). A powerful prediction model needs to account for all
these factors and, as a result, there is a great need for compre-
hensive expression and proteomic analyses to complement the
genome-wide DNA structural analyses outlined earlier.

A third biologic issue complicating the development of
oncology prediction models is heterogeneity in oncogenic path-
ways. Distinct genetic lesions may give rise to a common malig-
nant phenotype (i.e., there may be several different ways to
contract oral cancer). Indeed, based on different genomic
make-ups, cancer geneticists often consider a clinically identical
cancer type as multiple distinct diseases that share a similar
clinical phenotype. If there are many distinct etiologic possibil-
ities, and only one is necessary to produce cancer, then many
other etiologic variables may remain normal, despite the fact
that a malignancy develops. Again, this complicates the
development of prediction and classification models because no
single etiologic event is consistently present in all cases. Fur-
thermore, if there are many distinct etiologic pathways, no sin-
gle etiologic event may even be present in the majority of cases.
Thus, the prediction model needs to seek a set of potential
classifiers, any one of which is sufficient to forecast malignancy.
Traditional statistical classification models are essentially voting
schemes in which each measured variable adds an independent
indication of malignant potential that is then averaged together
with all other measured variables’ votes to produce an overall
prediction of malignant potential [67]. When there are many
variables measured, a large number of votes for ‘no cancer’ may
dilute a small number of ‘yes’ votes, even though those yes votes
are entirely sufficient to cause cancer at the biologic level.

The following sections suggest potential solutions that may
overcome the challenges that hinder the identification and even-
tual translation of genomic markers and targets for cancer pre-
diction, diagnostics, treatment and prognostics. In addition to
these analytic difficulties, several technical obstacles also con-
front genomic studies of cancer, including limited quantities of
tumor specimens, potential compromise of the genetic materials
due to the archival procedures, and heterogeneity in tumor sam-
ples (i.e., the existence of multiple clones of tumor cells with
different genomic characteristics in the same tumor sample).
New approaches are being optimized to overcome these hurdles,
including laser-capture microdissection (LCM) of single cells
from clinical specimens [53,68–70], and whole-genome amplifica-
tion techniques that can provide over 1000-fold amplification
of the target nucleic acids with minimum bias [71–73].

Comprehensive genomic approaches
As discussed earlier, one of the major challenges in cancer
research is to precisely delineate the complex genomic aberra-
tions that shape tumor cell behavior and clinical outcomes. A
feasible approach to overcome this problem is to combine a
selective set of molecular genetic technologies such as CGH,
LOH and various molecular cytogenetic analyses for compre-
hensive screening of genomic alterations with high resolution.
Each of these techniques has its own unique advantages, but
also its limitations, which have motivated efforts to combine
these approaches as shown in FIGURE 2. In this instance, the SNP
array-based LOH and CGH analyses provide a high-resolution
mapping of copy-number abnormalities, but offer little infor-
mation on chromosomal structure or spatial changes
(e.g., translocations: the most common class of somatic muta-
tion registered in the cancer-gene census [13]). On the contrary,
modern cytogenetic techniques provide a clear picture of the
gross chromosomal structure and spatial alterations, but have
limited resolution. This is clearly illustrated in FIGURE 3, where
concurrent cytogenetic and SNP array-based LOH analysis
were performed on three myelodysplastic syndrome (MDS)
samples. Two of the three cases exhibited concordant results
between karyotyping and SNP array-based LOH. However, for
case 1, the SNP array-based approach identified the loss of
chromosome arm 5q, but failed to identify the translocation of
chromosome 14 to chromosome 5 at the pericentromeric region
FIGURE 3A. This translocation was identified by karyotyping and
further confirmed by whole-chromosome paint (FIGURES 3B & C).
These results illustrate the advantage of a multimodal approach
to tumor genome analysis that combines the complementary
strengths of array-based and cytogenetic approaches.

As aforementioned, this multimodal approach can be
extended to combine DNA structural analyses with additional
high-resolution mapping genome functional activity at the
RNA and/or protein levels. Recent technical advances in micro-
array-based gene expression analysis have offered substantial
improvement in diagnosis, treatment and prognosis of cancer
patients. This continuous progress in microarray-based expres-
sion analysis, and the large public depositories of microarray
data, have motivated new efforts to extract additional biologic
information from these data in addition to the static RNA tran-
script levels. One such attempt involves inferring the chromo-
somal structural changes from spatially linked changes in
microarray expression data [20–22,75]. Several array-CGH studies
have shown a genome-wide correlation of gene expression with
copy-number alterations, and have proved useful in individual
amplicon refinement [76,77]. For example, through tissue micro-
array FISH and reverse transcriptase PCR, a minimally ampli-
fied region around ERBB2 was identified in a large number of
breast tumors; in addition, gene amplification was found to be
correlated with increased gene expression in a subset of those
samples [78]. Recently, several groups have observed that
chromosomal alterations can lead to regional gene expression
biases in human tumors and tumor-derived cell lines [20–22,79,80].
A recent study also demonstrated the correlation between SNP
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array-based LOH profiles and expression profiles [51]. These
studies suggest that a fraction of gene expression values
(15–25%) are regulated in concordance with chromosomal
DNA content [20–22,79,80]. Several statistical methods have been
developed and have shown promising results for detecting
DNA copy-number abnormalities based on differential gene

expression [20–22,75]. As shown in FIGURE 4, using the authors’
recently developed statistical model, a cytogenetically identified
10p chromosomal deletion was refined, based on the micro-
array expression data, and the boundaries of the deletion were
mapped specifically between bands 10p14 and 10p12 [21].
These results were further confirmed by subtelomere FISH.

These data demonstrate that it is feasible
to use microarray differential expression
data to identify significant DNA copy-
number abnormalities, and that RNA-
based gene expression analyses are con-
cordant with DNA-based measures of
chromosomal structural alteration. The
development of bioinformatics tech-
niques for reverse inference of DNA alter-
ations from RNA expression data offer a
new approach for genomic profiling that
can provide cross validation of functional
genomic alterations at multiple biologic
levels when combined with DNA-based
approaches such as CGH and LOH.

Additional functional genomic infor-
mation can be derived from microarray
gene expression data using bioinformatics
analyses of upstream transcription factor
dynamics. Several tools have recently been
developed to identify aberrant transcrip-
tion factor activity based on sequence
similarities in the promotors of large
groups of genes showing altered expres-
sion [81,82]. Aberrant transcription factor
activity plays a central role in many solid
tumors, and reverse inference of such
alterations from microarray gene expres-
sion data provides another mechanism for
cross validating the results of structural
genomic surveys, thus suggesting that a
particular transcription control pathway
might be altered in a tumor.

Statistical considerations
Array-based techniques offer a promising
approach for several types of DNA struc-
tural mapping (e.g., CGH and LOH), but
these techniques also pose some new ana-
lytic challenges. The increasing use of
array-based analyses stems, in part, from
the phenomenal success of expression
microarrays [83]. However, array-based
CGH and LOH analyses require more
complex preprocessing than expression
data, because spatially adjacent probes can
be expected to yield highly correlated sig-
nals (which may undermine assumptions
of statistically independent signals made

Figure 3. Comprehensive genomic analyses of a myelodysplastic syndrome using single nucleotide 
polymorphism (SNP) array-based approach and complementary cytogenetic approaches. (A) Three 
myelodysplastic syndrome cases were analyzed with a 10K SNP mapping array. The loss of heterozygosity 
(LOH) regions were detected and demarcated as described in [21,22]. The LOH patterns for chromosome 1, 
5, 7 and 14 are shown. Concordant results between the SNP array-based LOH and karyotyping were 
observed for two of the three cases. In case 1, SNP array-based LOH demonstrated no loss of 
chromosome 14 material and a more extensive 5q deletion than interpreted by the karyotype. (B) Whole 
Chromosome Paint of chromosome 14 was performed to verify the results from LOH analysis in this case 
[74]. Two signals for chromosome 14 (red) were clearly identified, with one chromosome 14 translocated to 
5q close to the pericentromeric region. (C) The karyotype for case 1 is presented. Together with the results 
from A and B, these data indicate a karyotype of 44,XX,del(1)(p32p36),der(5)t(5;14)(q13;q11.2),-7[cp20].
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in many statistical analyses). New statistical approaches are
required to accurately estimate low-level copy-number and
heterozygosity changes [55,84–87]. Once these low-level structural
changes have been mapped, higher order information can be
extracted using many statistical techniques originally developed
for expression arrays. For example, unsupervised clustering
methods can discover novel subclasses by identifying groups of
statistically related samples and/or genomic changes [67,88].
Supervised methods, which are more common in cancer
research, are used to find features that could help classify sam-
ples into known classes [89]. At the center of this approach is the
selection of features (e.g., specific chromosomal alterations)
that are tumor related. The most common approach simply
selects features that differ significantly across classes in uni-
variate analyses (e.g., considered in isolation from other fea-
tures) [90,91]. However, this first-order approach lacks the power
to discover etiologically relevant features that are present only
in subsets of the samples. As discussed earlier, the complexity of

oncogenesis requires the identification of combinations and
temporal relationships among features that link to cancer
development. In principle, two interrelated components (para-
meters) are sought: classifiers that can discriminate disease sta-
tus, and a set of roles for compiling these classifiers into a classi-
fication model. Although the magnitude of CGH and LOH
data is lower than that of expression data, the small numbers of
samples available in most experiments limits the performance
of higher order analysis. In addition, the small sample size
makes feature selection vulnerable to the instability caused by
experimental and biologic variability [92]. These facts argue for
the merit of establishing centralized databases and performing
meta-analysis across data sets.

As discussed in the previous section, the expression level of a
gene is often associated with its copy number. Lipson and
coworkers argue that copy-number change, coupled with dif-
ferential expression, may be a stronger indication of tumor
relatedness than copy-number change alone [93]. It may also be

Figure 4. Mapping the boundaries of chromosomal deletion by differential expression. (A) Human Genome U133 Plus 2.0 array (Affymetrix) was used to 
generate expression profiles for del(10) cells (GM03047) and matching control. Underexpressed transcripts in del(10) cells were identified using Microarray Suite 
5.0 (Affymetrix), with decreased transcription declared when the change p-value was less than 0.002. The transcripts were ordered according to sequence on 
chromosome 10, with red bars indicating the transcription start site of genes identified as significantly underexpressed in del(10) cells relative to a 
tissue-matched normal control cell. (B) As detailed in the authors’ recent study, a single break-point model allowing differential density of underexpression was 
fit by maximum likelihood [21,22]. The log likelihood associated with breakpoints at each ordinal position on chromosome 10 is plotted (black line) with the 
maximum likelihood value serving as the estimated origin of copy-number abnormality. Grey lines map ordinal positions of each assayed transcript to its 
chromosomal location. Significant change in the prevalence of underexpressed transcripts was identified at ordered transcript 224 (28.1 Mb from 10pter), and 
agrees with the previously defined origin of deletion by cytogenetic analyses. (C) To determine whether deletion extended to the p-terminus, transcripts 1–223 
were rescanned, and a second significant change in the prevalence of underexpressed transcripts was identified at ordered transcript 85 (12.2 Mb from 10pter). 
(D) No significant change in the prevalence of underexpressed transcripts was identified in the region ranging from ordered transcript 224 to 10qter. Together 
with the results from B, these data indicate a single partial deletion of chromosome 10p, spanning the region from 10p14–10p12. (E) Subtelomere fluorescence 
in situ hybridization verified results from the maximum likelihood expression-based analysis by confirming that the 10p deletion was interstitial with the intact 
subtelomere regions. Probes used are: 10ptel006 (10pter probe, green); 10qtel24 (10qter probe, red); PML (15q22 probe, aqua) and AFMA224XHI (15qter probe, 
yellow). Two normal signals for both 10p and 10q subtelomeres were clearly identified. (F) G-banded chromosome 10 of del(10) cell showing the deletion of the 
p arm of chromosome 10. Adapted with permission from [21] © 2005, British Medical Journal Publishing Group.
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possible to incorporate information about a gene’s functional
characteristics in data analyses focusing on growth control
pathways [94,95]. This approach is appealing when most genes in
a functional module are differentially expressed at a moderate
level, but few of the genes show drastic change. Examining
groups of genes may also help suppress the effects of noise in
the measurement of individual genes. However, this pathway
approach to analysis is undermined by the fact that functional
annotations are not complete, and tumors may involve only
one or two decisive alterations, rather than coordinated changes
in many genes in a pathway. The feasibility and clinical utility
of functional module analyses in CGH and LOH data remain
to be seen, but the more general principle of combining multi-
ple streams of information to enhance analytic resolution repre-
sents a promising approach for enhancing interpretation of
genome-wide surveys of DNA structural alterations in cancer.
The optimal analysis may involve a synthesis of information on
DNA structure, RNA expression, proteomic characteristics and
functional (pathway) or regulatory (transcription factor)
themes, which unite the ensembles of genes and proteins that
show aberrant activity in a given tumor. 

Expert commentary & five-year view
Microarray-based technologies for genome-wide assays of
DNA and RNA characteristics have developed more rapidly
than the ability to synthesize those assessments into a coherent
functional portrait of cancer pathogenesis. Over the next
5 years, the key steps forward in realizing the promise of struc-
tural and functional genomics in cancer will come from the
development of new informatics tools for combining multiple
assays of genomic structure, functional genomic activity and
their functional proteomic impacts.

Marriage of the top-down & bottom-up approaches
The genome-wide assay technologies outlined earlier are part of
the growing number of top-down approaches that provide
comprehensive genomic profiles that can be correlated with
biologic and clinical status or functional aspects of tumors. In
the near future, these analyses may help guide clinical treatment
decisions and, in the long term, may substantially advance our
fundamental understanding of tumor progression. More tradi-
tional bottom-up studies (so-called basic studies), which usu-
ally focused on individual genes or proteins, will continue to
provide details that are not glimpsed by the top-down (global)
approaches. Conversely, focused studies may be misinterpreted
due to the lack of global information. Thus, the integration of
bottom-up and top-down information will play a critical role in
defining the functional pathogenesis of cancer and shaping its
treatment. Pathway-based microarray data analysis represents
one of the attempts to integrate top-down and bottom-up
approaches. For example, the PathwayAssist™ package (Ari-
adne Genomics) and GeneWays™ (ExerGen Biosciences Inc.)
employ language-processing algorithms to extract relationships
between molecules by digesting published research literature
and incorporating those links into the microarray data analysis

algorithm [96,97]. Similar approaches may be employed to iden-
tify key functional targets within chromosomal alterations
identified by the cytogenetic and array-based structural analyses
outlined earlier. Integration of top-down and bottom-up analy-
ses may also speed the identification of interventions that might
ameliorate malignant cell growth (e.g., selecting drugs that tar-
get growth aberrations downstream of those arising from
defined sites of genetic damage).

Data analysis & management
The rapid development of genome-wide profiling technologies
has produced a substantial volume of new scientific findings, but
it has not yet had a substantial impact on the clinical treatment
of cancer. Part of the reason for this disconnection may involve
the nature of the statistical analyses employed in most previous
studies. As noted earlier, new analytic techniques will be required
to integrate multiple streams of data into a coherent functional
portrait of tumor pathogenesis. In addition, more attention
needs to be paid to the external validity (clinical or biologic sig-
nificance) of the results produced by various genomic and
genetic data analysis tools. When a statistical tool identifies a dif-
ference, or a cluster of related genomic alterations or candidate
genes, how often does this indication hold up in subsequent vali-
dation studies? Development of more sensitive, noise-resistant
algorithms might enhance the information yield from massively
parallel genomic measurements. There is probably still a long
way to go before a satisfactory solution to these analytic prob-
lems is found, but substantial progress can be made if resources
are focused in the right direction. With the potential to deter-
mine a large number of genomic alterations or candidate genes
in parallel, new genomics technologies offer tremendous promise
for basic biologic sciences and clinical diagnostics. However,
their ultimate utility will depend critically on whether or not the
search for efficient analytic methods meets with success.

Personalized therapies
Oncologists have long sought for targeted therapies for cancer
that focus on the specific genetic lesions present in an individual
patient’s tumor. The implementation of this concept requires pre-
cise characterization of the disease as well as knowledge of patient
background (e.g., genetic and environmental characteristics). For
tumors with a relatively narrow range of critical genetic defects
(e.g., acute promyelocytic leukemia and chronic-phase chronic
myeloid leukemia), the development and deployment of targeted
therapies has been more easily accomplished than in more com-
plex and heterogeneous tumor types (e.g., breast cancer, and non-
small cell lung cancer). The emergence of rapid, high-resolution
genome analysis tools provides an opportunity to tackle these
more heterogeneous malignancies at both the levels of basic
research (e.g., defining pathogenetic mechanisms) and clinical
treatment selection (e.g., determining which patients are suitable
for therapies targeting a particular growth-control pathway).
Advances in genome-wide profiling techniques and the develop-
ment of new statistical and computational capabilities will play a
key role in the expansion of personalized therapy for cancer.



Advancement in genomic profiling of cancer

www.future-drugs.com 47

Acknowledgements
This work was supported in part by NIH PHS grants R21
CA97771 and R01 DE015970–01 (to Wong), R21
AI49135 and R01 AI52737 (to Cole), and K22 DE014847,
RO3 DE016569, RO3 CA114688, and a TRDRP grant

13KT-0028 (to Zhou). The authors thank Ronald Paquette
at the Division of Hematology–Oncology and Nagesh Rao
at the Department of Pathology & Laboratory Medicine,
David Geffen School of Medicine, UCLA, for contributing
to the figures.

Key issues

• There is, and has been, continuous improvement in genomic profiling technologies.

• Selective genomic technologies must be combined strategically to gain comprehensive genomic profiles.

• Statistical methods are being improved to unite multiple streams of data.

• Concurrent analysis of genomic data from multiple experimental platforms from multiple studies and laboratories is required.

• Large-scale discovery and validation studies are underway based on the comprehensive genomic database.

• Integration of basic research results with genome-wide profiling data will lead to a better understanding of the oncogenesis process.

• Genomics-based classifiers and roles hold promise for the implementation of personalized therapies for cancer treatment.
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