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ABSTRACT: The complexities of the involvement of the serotonin
transmitter system in numerous biological processes and psychiatric
disorders is, to a substantial degree, attributable to the large number
of serotonin receptor families and subtypes that have been identified
and characterized for over four decades. Of these, the 5‑HT1A
receptor subtype, which was the first to be cloned and characterized,
has received considerable attention based on its purported role in
the etiology and treatment of mood and anxiety disorders. 5‑HT1A
receptors function both at presynaptic (autoreceptor) and
postsynaptic (heteroreceptor) sites. Recent research has implicated
distinct roles for these two populations of receptors in mediating
emotion-related behavior. New concepts as to how 5‑HT1A
receptors function to control serotonergic tone throughout life
were highlights of the proceedings of the 2012 Serotonin Club Meeting in Montpellier, France. Here, we review recent findings
and current perspectives on functional aspects of 5‑HT1A auto- and heteroreceptors with particular regard to their involvement in
altered anxiety and mood states.
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■ HISTORICAL PERSPECTIVE

Serotonin (5-hydroxytryptamine; 5‑HT) is a monoamine
neurotransmitter and neurohormone formed by the hydrox-
ylation and subsequent decarboxylation of the essential dietary
amino acid L-tryptophan. Serotonin is found primarily in the
gastrointestinal tract, platelets, blood vessels, thyroid, pancreas,
mammary glands,1−5 and central nervous system (CNS).6,7 In
the brain, serotonin is thought to be a key modulatory
neurotransmitter involved in the regulation of numerous
physiological and behavioral processes including mood- and
anxiety-related behavior, cognitive function, food intake, sexual
behavior, sleep, cardiovascular function, blood pressure, pain,
body temperature, and others.8−11

Serotonin was first reported in 1937 by Vialli and Erspamer
and named enteramine.12,13 In 1948, it was identified as a
vasoconstrictor in blood serum where it was referred to as
“serotonin”.14 Afterward, scientists realized that enteramine and
serotonin were one in the same.15,16 Serotonin was recognized
as a neurotransmitter when it was discovered in extracts from
mammalian brain.17,18 In 1986, the pharmacology of serotonin
was reviewed,19 and for the first time the existence of three
receptor families (5‑HT1−3) was described; additional families
were suspected. It is now known that the effects of serotonin
are mediated by at least 14 different receptors, which are

grouped into subfamilies based on pharmacological responses
to specific ligands, sequence similarities at the gene and amino
acid levels, gene organization, and second messenger coupling
pathways.20−23 Serotonin receptors are assigned to one of seven
families, 5‑HT1−7, with individual subtypes further designated
by letters.
Among serotonin receptors, much attention has been

focused on the 1A subtype (5‑HT1A). The human 5‑HT1A

receptor was cloned in 1987 as a single intronless gene24

located on chromosome 5 (5q11.2-q13). In mice, the Htr1a
gene resides on the distal part of chromosome 13. The 5‑HT1A

receptor protein consists of 422 amino acids. Evidence from
human and rodent studies suggests that 5‑HT1A receptors are
implicated in a variety of physiological and pathological
processes, such as learning, memory, schizophrenia, Parkinson’s
disease, and notably in the etiology and treatment of mood and
anxiety disorders.25−32
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■ ADULT EXPRESSION AND FUNCTION OF 5‑HT1A
RECEPTORS

Direct Autonomous Inhibition. In the mammalian brain,
5‑HT1A receptors are divided into two distinct classes based on
localization. The cell bodies of central serotonergic neurons are
found in the raphe nuclei in the brain stem (Figure 1A),33,34

where 5‑HT1A receptors are located on soma and den-
drites.35−37 These 5‑HT1A autoreceptors exert inhibitory
feedback in response to local release of serotonin in the
raphe nuclei from axonal collaterals (Figure 1B).38−43 Addi-
tionally, sources of local serotonin release have been proposed
to arise from somatic and dendritic sites on serotonergic
neurons.44−46 Serotonin release in the cell body region results
in reductions in serotonergic pacemaker activity and
suppression of serotonin synthesis, turnover, and release in
projection areas.47−51 In support of this, constitutive 5‑HT1A
knockout mice show increased rates of serotonin neuronal
discharge52 and elevated basal dialysate serotonin levels in
frontal cortex and hippocampus.53

Indirect Inhibition from Medial Prefrontal Cortex.
5‑HT1A receptors are also expressed by nonserotonergic
pyramidal, GABAergic, and cholinergic neurons54−58 in limbic
regions such as prefrontal cortex, hippocampus, lateral septum,
and amygdala, as well as in several hypothalamic and thalamic

nuclei (Figure 1A).37,59,60 Activation of 5‑HT1A heteroreceptors
mediates hyperpolarizing responses to released serotonin,
which typically reduces postsynaptic neuronal excitability and
firing rates.37,40,59 As such, 5‑HT1A heteroreceptors are involved
in the modulation of other neurotransmission systems. For
example, 5‑HT1A receptors in the medial prefrontal cortex
(mPFC) modulate dopamine cell firing and release.61−63

In addition to direct/local 5‑HT1A receptor-mediated
autoregulation, evidence exists for an indirect negative feedback
mechanism that involves 5‑HT1A heteroreceptors in the mPFC
(Figure 1B).64−66 The mPFC-dorsal raphe nucleus (DRN)
pathway comprises glutamatergic descending projections that
are hypothesized to decrease serotonin cell firing by activating
DRN GABAergic interneurons to inhibit serotonin re-
lease.65−72 This pathway has been suggested as one of the
neuroanatomical substrates controlling the effects of stress by
preventing overactivation of DRN serotonergic neurons.73 A
minor glutamatergic pathway may also exist from the mPFC
that excites serotonin cell firing directly in the DRN.68,69 It is
still not well understood how inhibitory 5‑HT1A hetero-
receptors excite cortical glutamatergic neurons. The most
plausible explanation is the disinhibition of glutamatergic
neurons via mPFC GABA interneurons expressing 5‑HT1A

heteroreceptors.58,74 However, further studies are required to

Figure 1. Inhibitory mechanisms of 5‑HT1A autoreceptors. (A) Serotonergic cell bodies expressing 5‑HT1A autoreceptors are located deep within the
brainstem (blue box). Serotonin neurons projecting to the forebrain are organized into two main clusters designated as dorsal and median raphe
nuclei with distinct subpopulations within these primary nuclei. 5‑HT1A heteroreceptors are localized postsynaptically in various brain regions
including the hippocampus (HIP), prefrontal cortex (PFC), thalamus (TH), lateral septum (SEP), amygdala (AMYG), and hypothalamic nuclei
(HYP). Many of these regions have been associated with the pathophysiology of mood and anxiety disorders. (B) The top panel depicts a
“conventional” serotonin synapse. In the bottom panel, activation of 5‑HT1A autoreceptors controls serotonergic tone via one-to-one autoinhibitory
feedback to reduce firing rates of serotonin neurons. 5‑HT1A heteroreceptors also regulate serotonergic activity through descending glutamatergic
projections originating in the medial prefrontal cortex (mPFC). This pathway makes connections with serotonin neurons via brainstem GABAergic
inhibitory interneurons. (C) Current hypotheses regarding inhibitory mechanisms of 5‑HT1A autoreceptor activation paint a more complex picture.
For instance, emerging evidence suggests that serotonin neurons within a subpopulation or even across subpopulations affect each other via “lateral
inhibition”. Taken together, new perspectives on the functional aspects of 5‑HT1A receptors associated with regulation of serotonergic activity are
important avenues for future investigation, particularly regarding increased understanding of the roles of 5‑HT1A receptors in the etiology and
treatment of psychiatric disorders.
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determine the specific mechanisms of 5‑HT1A receptors in the
mPFC.
Intracellular Signaling. 5‑HT1A receptors are inhibitory G-

protein coupled receptors (GPCRs). Early studies identified
that 5‑HT1A receptors function by coupling to Gi/Go proteins
in most cells.75 Extracellular receptor binding of serotonin or
5‑HT1A agonists leads to intracellular exchange of GDP for
GTP on Gi/Go alpha subunits. This, in turn, inhibits adenylyl
cyclase, which reduces cAMP levels and protein kinase A
activity.76 Furthermore, agonist-induced activation of 5‑HT1A
receptors results in potassium channel activation and calcium
channel inhibition.25,59,77−80 5‑HT1A receptors are coupled to
different GPCR pathways based on localization.81 5‑HT1A
autoreceptors couple exclusively to Gαi3 leading to partial
inhibition of adenylyl cyclase,82−85 an effect that may depend
on specific agonists.83,86,87 By contrast, 5‑HT1A heteroreceptors
couple mainly to Gαo in the hippocampus, and equally to Gαo
and Gαi3 in cerebral cortex.88 Differences in 5‑HT1A Gα
subunit coupling might explain regional differences in activation
versus inhibition of intracellular signaling pathways. 5‑HT1A
autoreceptor desensitization is more pronounced compared to
5‑HT1A heteroreceptor desensitization, which also could be
related to differential Gα coupling.88,89 Stimulation of 5‑HT1A
receptors also leads to activation of G-protein-coupled inward
rectifying potassium channels (GIRKs)90 in raphe neu-
rons86,91−95 and hippocampus.96−98 Whether 5‑HT1A receptors
fully couple to inhibit adenylyl cyclase remains controversial, as
it has been suggested that the hyperpolarizing response
mediated by 5‑HT1A autoreceptors is due to the activation of
GIRK channels via G-protein βγ subunits.99

In addition to their canonical function, 5‑HT1A receptors
activate growth factor-regulated signaling pathways, such as
mitogen-activated protein kinases (MAPK) and Akt signaling
pathways.25 In MAPK signaling, ERK is preferentially affected
by 5‑HT1A receptors. For example, in RN46A cells, a model of
serotonergic raphe neurons that express endogenous 5‑HT1A
receptors, adenylyl cyclase and ERK1/2 phosphorylation were
inhibited by 5‑HT1A-receptor activation.100 However, in
hippocampal-derived differentiated HN2-5 cells, 5‑HT1A
agonists increased ERK phosphorylation and activity.101

These and other studies suggest that the modulation of ERK
may depend on neuronal origin, as well as maturation
states.102−106

The Akt signaling pathway is also activated in 5‑HT1A
receptor-expressing cells and primary hippocampal neu-
rons.104,107,108 Activation of Akt by 5‑HT1A receptors led to
inactivation of GSK3β in hippocampal cultures,104,109,110 an
effect also observed in raphe cultures.105 Recently, it has been
suggested that the GSK3-regulating effects of 5‑HT1A receptors
are mediated by the PI3K/Akt signaling pathway.111 Taken
together, 5‑HT1A autoreceptors and heteroreceptors have
diverse intracellular signaling capabilities contributing to the
complex regulation of the serotonin system, as well as neuronal
networks modulated by serotonin.

■ 5‑HT1A RECEPTORS IN DEVELOPMENT
Serotonin is a morphogenic factor,112 and alteration of
serotonin levels during early developmental windows has
been shown to influence mood- and anxiety-related behavior
in adult animals.113−115 Thus, mapping and understanding
factors that regulate the developmental trajectory of 5‑HT1A
receptor expression are important given that autoreceptors
modulate serotonin release and heteroreceptors are widely

expressed in emotion-related circuits, where they mediate the
effects of released serotonin. In rodents, 5‑HT1A receptors
appear in early embryonic development. Using in situ
hybridization and immunocytochemistry, 5‑HT1A mRNA has
been detected as soon as embryonic day (E) 12 and 5‑HT1A
receptor protein by E14 in neuronal cultures prepared from
brain stem.116 A surge in 5‑HT1A mRNA levels in the brain
stem occurs beginning on E13, with peak levels occurring at
E15−16.117 Developmentally related changes in 5‑HT1A
receptor expression also occur at postsynaptic sites. Transient
expression is evident in the septum and preoptic region during
embryonic development.118 5‑HT1A expression occurs at high
levels in the cerebellum during the first two postnatal weeks
tapering off to near undetectable levels by postnatal day (P)
21.119,120 In brain regions associated with the regulation of
mood and anxiety, 5‑HT1A-receptor expression likewise exhibits
complex patterns during development. In situ hybridization and
[3H]-8-OH-DPAT binding both indicate low 5‑HT1A ex-
pression in the dentate gyrus granule cell layer of the
hippocampus at E14.5, with levels gradually increasing during
the first few postnatal weeks and reaching near adult levels by
P13.118−121

Reports on the ontogeny of 5‑HT1A receptors in the
developing human brain, albeit fewer, are in agreement with
those on rodents. In one study, [3H]-8-OH-DPAT binding was
used to examine 5‑HT1A receptor expression from tissue
acquired at different stages of gestation.122 Although expression
levels varied with respect to gestational age (16−22 weeks), the
relative regional distribution of 5‑HT1A receptors was similar
across time points. The highest receptor densities occurred in
subregions of the hippocampus and frontal cortex, where a
surge in 5‑HT1A expression was observed at 18−22 weeks of
gestation resulting in levels 3−4 times higher than those
reported in adults.122 Others have used in situ hybridization to
compare 5‑HT1A receptor mRNA levels in human tissue
collected at ∼28 weeks of gestation compared to 6−7 years of
age.123 Human fetal brain contained the highest 5‑HT1A mRNA
levels in raphe nuclei, cerebellum, and the CA1 and dentate
gyrus regions of the hippocampus. When compared to later
ages, only expression in the cerebellum showed dramatic
changes, with mRNA levels being lower in children and
undetectable in adults.123,124 The latter is similar to the
cerebellar expression pattern reported in rodents. Thus,
5‑HT1A-receptor expression undergoes tight temporal regu-
lation and in some regions, brief emergence and disappearance,
suggesting morphogenic influences, especially in areas of the
brain involved in modulating anxiety levels in adults.
A few studies have investigated functional aspects of 5‑HT1A

receptors during development by means of electrophysiology or
pharmacologic challenge. Electrophysiological recordings in the
prefrontal cortex of rats indicated that 5‑HT1A receptor-
mediated hyperpolarization appears late in postnatal develop-
ment between P16 and P19 corresponding temporally with
increases in receptor protein expression.118−120,125 In mice,
5‑HT1A-receptor mediated outward currents were not evident
at P4 but were observed by P12.126 5‑HT1A responses
developed after the appearance of physiology characteristic of
serotonergic neurons, which appeared to be fully developed by
P12. 5‑HT1A receptor-signaling pathways important for
mediating developmental processes are complex. For example,
8-OH-DPAT-induced activation of the MAPK pathway, and
specifically ERK1/2 kinases, requires different PKC isozymes to
regulate distinct developmental processes (e.g., cell division
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versus synaptic activity/strengthening) at P6 versus P15.127

More work will be needed to understand functional changes in
5‑HT1A mediated pre- and postsynaptic responses during
postnatal development, particularly in terms of critical
developmental windows important for shaping and determining
anxiety-related behavior later in life.

■ 5‑HT1A RECEPTORS IN MOOD AND ANXIETY
Mechanisms of Antidepressants. 5‑HT1A autoreceptors

play an important role in regulating serotonergic activity
through feedback inhibition pathways. As such, the involvement
of 5‑HT1A receptors in the mechanism of action of
antidepressants has been widely investigated, and literature
supporting a role for this receptor population in the delayed
efficacy of antidepressants has evolved. 5‑HT1A autoreceptors
(and possibly heteroreceptors) limit increases in extracellular
serotonin levels induced by serotonin selective reuptake
inhibitors (SSRIs). Even after chronic SSRI treatment,
5‑HT1A autoreceptors maintain some control over serotonin
release.128−132

The delayed efficacy of SSRIs has been partially attributed to
the need for desensitization of 5‑HT1A autoreceptors in the
raphe nuclei, enabling firing rates of serotonergic neurons to
overcome inhibition.128,133−137 However, only ∼50% of studies
in rodents show increased extracellular serotonin after chronic
administration of serotonin reuptake inhibiting antidepres-
sants.138 In this context, concomitant administration of 5‑HT1A
receptor antagonists with SSRIs has been hypothesized to
hasten or potentiate changes in serotonin levels to improve
clinical efficacy.54,139 The ability of the partial 5‑HT1A
antagonist, pindolol, to accelerate antidepressant clinical
efficacy has been investigated in patients with major depressive
disorder. Meta-analyses suggest that pindolol administered in
combination with SSRIs augments and accelerates symptomatic
improvement after 2 weeks of treatment specifically in patients
without prior history of treatment.140−142

However, not all findings support a role for 5‑HT1A
autoreceptor desensitization and its effects to accelerate SSRI
treatment. For example, administration of pindolol in
combination with SSRIs to patients with treatment resistant
depression or extensive treatment histories does not hasten or
produce symptom amelioration.143,144 Human studies examin-
ing the role of 5‑HT1A receptors in the treatment and etiology
of major depressive disorder indicate that sensitivity to receptor
signaling after administration of agonists are complicated based
on reports of reduced receptor number and binding, as well as
genetic influences.145 Additionally, mechanisms of autoreceptor
desensitization are not clear and may differ depending on the
antidepressant administered. For example, chronic fluoxetine
results in desensitization of autoreceptors, which is associated
with a reduction in receptor stimulated [35S]GTPγS bind-
ing.146−149 However, G-protein coupling is not altered in
association with administration of the SSRI sertraline,
indicating that antidepressants differ with regard to mechanisms
of 5‑HT1A desensitization.146

In addition to conflicting findings regarding 5‑HT1A
autoreceptor desensitization in clinical studies, desensitization
occurs in animal models of depression generated via chronic
stress paradigms.150−154 5‑HT1A autoreceptors and hetero-
receptors are also desensitized in serotonin transporter
knockout mice in association with a phenotype characterized
by enhanced anxiety.155−158 Together, these studies highlight
the complex regulation of 5‑HT1A pathways, such that

desensitization may be common to both the treatment and
precipitating etiological factors associated with major depressive
disorder.

Animal Models of 5‑HT1A Disruption. In light of data
suggesting a role for 5‑HT1A receptors in mediating
antidepressant responses in humans, it is logical to suspect
that these receptors also function in the neurocircuitry and
pathophysiology of emotion-related behavior. Genetic manip-
ulation of the murine Htr1A gene has been carried out to study
the behavioral effects of receptor under- or overexpression. In
both cases, the majority of data point to a role for 5‑HT1A
receptors in anxiety-related behavior. Table 1 in the Supporting
Information provides a comprehensive summary of the
literature to date focused on anxiety- and depression-like
behaviors, and learning and memory in animal models of
altered 5‑HT1A expression. Taken together, these studies
provide convincing evidence that global reductions in 5‑HT1A
receptor expression lead to increased anxiety-related behavior
in adult animals across different strains of mice and behavior
test paradigms.
The first reports on mice with reduced 5‑HT1A expression

appeared simultaneously in 1998. Three separate laboratories
produced constitutive 5‑HT1A knockout mice, each in a
different background strain (Supporting Information Table
1).159−161 Consistent changes in behavior were observed in
tests for anxiety-related behavior associated with conflict in
novel environments, including exploration in the center of the
open field or the open arms of the elevated plus maze. Changes
in behavior were more consistently replicated across tests in
male versus female mice. In terms of depression-like behaviors,
mice with reduced 5‑HT1A expression displayed reduced
immobility in the forced swim160,161 and tail suspension
tests.159 However, interpretations of these behavioral changes
were not in agreement. Some authors perceived decreased
immobility as an increased stress response,160 while others took
a more traditional view of reduced immobility162 as indicative
of decreased learned helplessness/behavioral despair or an
increased antidepressant-like response.159,160

Following these initial reports, others confirmed increased
anxiety-like behavior in 5‑HT1A knockout mice when presented
with conflict situations (see Supporting Information Table 1 for
a full list of references). Findings also included modestly
enhanced fear responses to stressful stimuli such as foot
shock.163−166 In terms of learning and memory, mice with
reduced 5‑HT1A expression displayed deficits in hippocampal-
dependent learning indicated by increased latencies and path
lengths to find the hidden platform in the Morris water
maze.167,168 As opposed to mice with constitutive deletion of
5‑HT1A receptors, mice with developmentally limited over-
expression of 5‑HT1A heteroreceptors in dentate gyrus and
cortex also displayed reduced anxiety in novel, conflict
environments.169 By contrast, mice with permanent over-
expression failed to show changes in anxiety-like behaviors.170

Similar to 5‑HT1A knockout mice, transient 5‑HT1A over-
expression resulted in deficits in hippocampal-dependent
learning and memory in the Morris water maze.171 Deficits
were less pronounced or absent in permanent overexpressing
mice.172 Information pertaining to changes in learning and
memory after 5‑HT1A receptor manipulation is reviewed in
detail elsewhere.172,173

Recently, studies have been carried out to delete specific
subpopulations of 5‑HT1A receptors enabling the differentiation
of pre- versus postsynaptic behavioral effects.174 When 5‑HT1A
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autoreceptors were selectively inactivated, mice exhibited
increased anxiety-like behavior similar to constitutive knockout
mice. These findings highlight the importance of raphe 5‑HT1A
receptors in mediating anxiety responses. By contrast, when
5‑HT1A heteroreceptors were specifically targeted, normal
anxiety-like behavior was observed; however, increased
depression-like behavior was observed in the forced swim
test.174 Increased anhedonic behavior related to reduced
consumption of palatable food has also been observed in
mice with 5‑HT1A heteroreceptor knockout. The latter findings
on depression-related behavior illustrate an interesting
dichotomy since mice with constitutive deletion of 5‑HT1A
auto- and heteroreceptors show decreases in depression-like
behavior (see Supporting Information Table 1). Thus, the
synergistic effects of genetically inactivating auto- and hetero
5‑HT1A receptors cannot be predicted by studying knockout of
either receptor population in isolation.
In addition to mice with complete loss of 5‑HT1A

autoreceptors, mice with 30% reductions in 5‑HT1A auto-
receptor expression have been generated.175 These mice display
potentiated responses to the administration of fluoxetine as
indicated by increased dialysate serotonin levels. These findings
are important in the context of human HTR1A gene
polymorphisms, including the C(−1019)G HTR1A single
nucleotide polymorphism,176−178 which is hypothesized to
affect the expression and function of 5‑HT1A receptors and to
contribute to the high numbers of antidepressant non-
responders.179

■ NEW PERSPECTIVES ON 5‑HT1A AUTORECEPTORS
Networks and 5‑HT1A Inhibitory Function. It is widely

accepted that 5‑HT1A receptors located on serotonergic
neurons participate in autoinhibition. However, a more
complex picture of inhibitory function than simple one-to-
one regulation of serotonin cell firing is emerging. Serotonin
neurons are anatomically heterogeneous and their projections
to the forebrain are topographically organized.180−183 Fur-
thermore, distinct, reproducible patterns of serotonin neuron
activation within the raphe nuclei can be seen in response to
specific external stimuli, suggesting that anatomical topography
underlies functional topography.182,184 Additionally, micro-
dialysis studies examining extracellular serotonin levels after
the application of various stressors have supported the idea of
defined network patterns of serotonin neurons such that stress-
induced changes in serotonin levels are stressor- and region
specific.185 These observations suggest that feedback inhibitory
pathways might work to control serotonin-network activity. In
one model, raphe serotonin neurons exhibit autonomous
feedback such that groups of functionally similar serotonergic
neurons regulate themselves in a homeostatic manner (Figure
1C).180

Nonautonomous feedback has also been suggested in which
crosstalk between distinct groups of serotonin neurons provides
“lateral inhibition” influencing patterns of activation (Figure
1C).180 Along these lines, recent work by Commons and
Sperling has demonstrated complementary patterns of
activation of serotonergic neurons after exposure to and
withdrawal from nicotine, which are different and reciprocally
switched after 5‑HT1A receptor blockade.181 These findings
suggest that endogenous feedback inhibition provided by
5‑HT1A receptors might be regionally organized and depend
on behavioral states. While these observations do not exclude
an autoregulatory function, they raise the possibility that

5‑HT1A receptors might also operate in a nonautonomous
fashion to mediate communication between different groups of
serotonin neurons, thus suggesting that 5‑HT1A receptors are
involved in a regional form of autoregulation between different
raphe subfields. These studies are consistent with anatomical
studies showing that there are many interconnections between
the different raphe nuclei180 and axon collaterals of serotonin
neurons travel for some distance within the dorsal raphe
nuclei.186

There are also a number of distinct serotonin subsystems
with unique genetic programming and functions.187 Recent
studies have shown that, in raphe nuclei, there are at least three
different serotonin cell-types grouped by anatomical, physio-
logical, and molecular characteristics, and their distribution
transcends the traditional anatomical classification of raphe
subfields. Furthermore, forebrain regions receiving serotonergic
projections are innervated by serotonin neurons with distinct
characteristics, forming a highly organized circuit.188 Therefore,
identifying and understanding functionally specific axon
collaterals within the raphe that are involved in controlling
emotional behaviors is likely to be an important future direction
of research.

■ FUTURE PROSPECTS
Targeting Specific Receptor Populations. The evolving

distinctions between the specific and diverse roles for 5‑HT1A
auto- versus heteroreceptors and the manner in which different
populations of neurons expressing 5‑HT1A receptors elicit
control over serotonergic tone is now shifting away from
simplified views centered on autonomous autoreceptor-
mediated feedback inhibition. Classical definitions of auto-
receptors, which have long been associated with controlling
serotonergic firing rates via feedback inhibition, remain an
important functional property of these receptors. Yet, rather
than one-to-one associations, emerging findings point to the
idea that inhibitory regulation is also more complex and might
operate at several levels that involve multiple pathways and/or
networks that influence neighboring circuits.
As the rich complexity of 5‑HT1A receptor organization and

function continues to be uncovered, optimizing treatment
strategies for mood and anxiety disorders by preferentially
targeting different 5‑HT1A receptor populations or networks to
produce therapeutic effects should become possible. For
example, the novel 5‑HT1A agonist, F15599, has been shown
to reduce immobility in the forced swim test189 and to promote
these effects primarily through activation of 5‑HT1A hetero-
receptors localized in the frontal cortex.106 These findings
support the idea that in addition to 5‑HT1A autoreceptor
desensitization following antidepressant treatment, increased
5‑HT1A heteroreceptor activity occurs to promote antidepres-
sant efficacy.190−193 Furthermore, in support of the roles of
5‑HT1A autoreceptors in mood and anxiety-related behavior,
recent advances using siRNA to silence 5‑HT1A autoreceptor
expression have been shown to ameliorate immobility
associated with learned helplessness and to augment fluox-
etine-induced increases in serotonin levels in postsynaptic
regions.194,195

5‑HT1A Receptors: A View of the Future. The serotonin
system, and 5‑HT1A receptors in particular, exhibit properties
that continue to challenge and enlarge our understanding of
receptor function. In addition to direct autonomous inhibition,
evidence now exists for indirect inhibition of raphe serotonergic
neurons arising from a mPFC-DRN pathway. It will be
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informative to sort out whether direct and indirect pathways
work independently or synergistically to limit serotonin release
in the mPFC. Moreover, the actions of serotonin might be
coordinated across different brain regions as part of a global
circuitry via lateral inhibition within and across subpopulations
of raphe neurons, some of which have different developmental
origins and genetic lineages. Thus, a picture of 5‑HT1A
receptor-mediated control of emotion-related behavior via
coordination of brain-wide networks is coming to light. Still,
additional work will be needed to uncover precise interactions
between different parts of this network, hierarchical principles
of 5‑HT1A receptor function, and early life sequencing with
regard to lasting consequences for network development.
Many animal models of altered 5‑HT1A receptor expression

have been created. Taken together, studies on these models
highlight two important aspects of 5‑HT1A receptors in regard
to anxiety-related behavior. First, most studies point to 5‑HT1A
receptors, particularly during postnatal development, as key
regulators of anxiety (see Supporting Information Table 1). By
contrast, pharmacologic inhibition or genetic manipulation of
5‑HT1A receptors in adult animals fails to produce anxiogenic
behavior.196,197 Second, unraveling the significance of 5‑HT1A
auto- versus heteroreceptors in regard to establishing baseline
anxiety behavior is important. Null 5‑HT1A mutant mice in
which 5‑HT1A heteroreceptors were ectopically overexpressed
during development169 or where 5‑HT1A receptor expression
was restored in forebrain regions, for example, hippocampus,
cortex, and striatum,196 exhibit reversal or rescue of increased
anxiety behavior, respectively. However, the importance of
heteroreceptors in gain-of-function experiments has been
questioned by recent tissue-specific conditional knockout
strategies where 5‑HT1A autoreceptors, but not heterorecep-
tors, have been shown to be critical components for
establishing normal levels of anxiety.174 As additional
information on the specific roles of different 5‑HT1A receptor
subpopulations and their influence over emotion-related
behaviors during various timeframes become clear, avenues
for novel treatment strategies for mood and anxiety disorder
should become evident.
Further, as we sort out which 5‑HT1A receptor inhibitory

circuits play key roles in shaping specific types of behavior,
these are also expected to become targets for the development
of more selective and, hopefully, more effective therapeutics.
Recent findings have shown that different populations of
5‑HT1A receptors are coupled to different/multiple intracellular
signaling pathways. This suggests the possibility of developing
allosteric modulators or other types of small-molecule drugs
that modify specific intracellular signaling pathways in cases
where a particular type of receptor is coupled to more than one
pathway in the same cell type or to different Gα subunits in
different cells types.
Finally, the serotonin system remains unique among known

neurotransmitter systems in that it is the only system identified
as having two molecularly distinct autoreceptors. In addition to
5‑HT1A receptors, serotonergic function is regulated by 5‑HT1B
autoreceptors, which are expressed presynaptically on serotonin
axon terminals, in addition to postsynaptic axonal localization
associated with dopaminergic, GABAergic, and glutamatergic
systems.198 Thus, both 5‑HT1A and 5‑HT1B receptors function
as autoreceptors and heteroreceptors. It is tempting to think
that 5‑HT1B receptors might exhibit complexity similar to
5‑HT1A receptors in terms of multiple inhibitory circuits or
hierarchical organization. Perhaps, continued investigation of

5‑HT1A (and 5‑HT1B) receptors, as well as other receptor
subtypes that function both as auto- and heteroreceptors, for
example, dopamine D2 and noradrenergic alpha2 receptors, will
reveal additional modes of regulatory feedback and network
organization. Nonetheless, it appears that recent advances in
understanding 5‑HT1A receptor function lead the way in terms
of extending and expanding our thinking as to how behavioral
circuits are organized and controlled by a specific receptor
subtype. They also provide exciting new opportunities for drug
discovery and development, particularly for the treatment of
mood and anxiety disorders.
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