concerning for HRPAH, even if Doppler echocardiography-estimated PASP is not more than 35 mmHg.

Acknowledgements

The work was supported in part by grants from the NIH (R01HL091526, R01 AI052745, R01 CA119903, P30 AI27763 and MO1 RR000083), and Actelion. Registration site: www.clinicaltrials.gov, study number: NCT00845013.

Conflicts of interest

P.Y.H. has been the recipient of an investigator-initiated award from Actelion and consulting fees from Gilead. There are no other conflicts of interest.

Activities in the field of grants/permission

Division of Cardiology, San Francisco General Hospital, Department of Medicine and the Positive Health Program of the Department of Medicine, San Francisco General Hospital, Department of Epidemiology and Biostatistics, University of California San Francisco, and Division of Endocrinology and Metabolism, San Francisco VA Medical Center, San Francisco, California, USA.

Correspondence to Priscilla Y. Hsue, MD, Division of Cardiology, San Francisco General Hospital, Room 5G1, 1001 Potrero Avenue, San Francisco, CA 94110, USA.

Tel: +1 415 206 8257; fax: +1 415 206 5447;
e-mail: phsue@medsfgh.ucsf.edu

Received: 14 May 2012; revised: 28 June 2012; accepted: 29 June 2012.

References


DOI:10.1097/QAD.0b013e3283579653

A feasibility analysis of implementing interventions for discordant couples in 14 African countries: implications for epidemic control

Brian J. Coburn and Sally Blower

We find interventions targeting serodiscordant couples (SDC) may not be feasible in countries where HIV prevalence is less than 5%, because only 3–19/1000 individuals are HIV-positive/negative and in SDC. Interventions may be feasible in countries where prevalence is greater than 10%, because 34–48/1000 individuals are HIV-positive/negative and in SDC. We calculated that 20–27% of all HIV-positive individuals, but less than 6% of all HIV-negative individuals, are in SDC. Consequently, targeting HIV-positive partners could significantly reduce transmission, whereas targeting HIV-negative partners may have little impact.

The WHO has recently recommended public health interventions targeted to discordant couples (i.e. couples wherein one partner is HIV-positive) should be a high priority [1]. Transmission in stable serodiscordant couples (SDC) can cause up to 50% of new HIV infections in Africa [2]. Two recent large-scale phase III clinical trials (HPTN 052 and the Partners PrEP Study) have shown interventions targeted to SDC can be extremely effective in reducing transmission [3,4]. HPTN 052 demonstrated providing antiretroviral treatment to the HIV-positive partner (i.e. using treatment as prevention, TasP) reduces transmission by 96% [3]. Partners PrEP Study demonstrated providing antiretroviral treatment to the HIV-negative partner (i.e. preexposure prophylaxis, PrEP) reduces transmission by 67–75% [4]. Now the efficacy of these interventions has been demonstrated, their feasibility needs to be evaluated. Here we present the first feasibility analysis of implementing public health interventions targeting SDC in sub-Saharan Africa. We assess the feasibility of implementing interventions based on TasP and PrEP.

We used data from 14 countries in sub-Saharan Africa: Burkina Faso, Cameroon, Côte d’Ivoire, Ethiopia, Ghana, Guinea, Kenya, Lesotho, Malawi, Niger, Rwanda, Senegal, Tanzania and Zimbabwe. These countries show considerable variation in epidemic severity; HIV prevalence ranges from 1% (Niger, Senegal) to 24% (Lesotho). Discordancy levels range from 1% (Senegal) to 14% (Lesotho) [5]. Population size (15–49-year olds) ranges from 0.9 million (Lesotho) to 34.5 million (Ethiopia) [6].
By aggregating data from the 14 countries, we determined whether HIV prevalence and the degree of discordancy are correlated. We then estimated, for each country, the number per 1000 individuals who are HIV-positive (or HIV-negative) and in SDC.

We used data for each country from their Demographic and Health Survey (DHS); these are nationally representative household surveys [7]. Data are collected on HIV prevalence, demographics, and the proportion of couples who are concordant positive (i.e. both individuals are HIV-positive), concordant negative (i.e. both individuals are HIV-negative) or discordant.

We aggregated DHS data from all 14 countries to determine the relationship between HIV prevalence and the level of discordancy; and the level of discordancy and positive concordancy. We then used country-specific DHS data to estimate the number per 1000 individuals who are HIV-positive and in SDC, or in concordant couples or single. We made the same estimates for HIV-negative individuals. We used published methods and assumed 70% of the adult population were in couples [8,9].

We found [see Figure 1A in Supplementary Material (SM), http://links.lww.com/QAD/A244] an exponential function links HIV prevalence (y) and the level of discordancy (x):

\[ y = A(e^{\alpha x} - 1) + \epsilon, \]  

where \( \hat{\alpha} = 0.13 \) (95% confidence interval (CI): 0.10–0.17), \( \hat{A} = 4.37 \) (95% CI: 2.60–7.57), and \( \epsilon \) is the error term. Consequently, if the prevalence is known for a specific country, the level of discordancy in that country can be estimated using the inverse function of equation (1):

\[ x = \frac{1}{\alpha} \log\left(1 + \frac{y}{A}\right). \]  

We also found, see Figure 1B in SM, http://links.lww.com/QAD/A244, an exponential function links positive concordancy and discordancy. This is specified by equation (1), but with the parameter values: \( \hat{\alpha} = 0.27 \) (95% CI: 0.22–0.31) and \( \hat{A} = 0.53 \) (95% CI: 0.28–0.93).

The 14 countries can be classified into three categories based on prevalence. Burkina Faso, Côte d’Ivoire, Ethiopia, Ghana, Guinea, Niger, Rwanda and Senegal are low (<5%); Cameroon, Kenya and Tanzania are moderate (5–10%); Lesotho, Malawi and Zimbabwe are high (>10%). In high prevalence countries, 34–48 per 1000 individuals are HIV-positive and in SDC, 49–137 HIV-positive and in concordant couples, 41–52 HIV-positive and single (Table 1). The majority (40–58%) of all HIV-positive individuals in these countries are in concordant couples, 20–27% are in SDC and 22–33% are single. In moderate prevalence countries, 18–28 per 1000 individuals are HIV-positive and in SDC, 16–25 HIV-positive and in concordant couples, 16–21 HIV-positive and single (Table 1). In low prevalence countries, 3–19 per 1000 individuals are HIV-positive and in SDC, 2–18 HIV-positive and single (Table 1).

Regardless of prevalence, the majority of HIV-negative individuals are in concordant partnerships or single (Table 1). In the 14 countries, 3–48 per 1000 individuals are HIV-negative and in SDC, 468–692 HIV-negative and in concordant couples, 248–296 HIV-negative and

<table>
<thead>
<tr>
<th>Country</th>
<th>Population aged 15–49 (in millions)</th>
<th>HIV prevalence (%)</th>
<th>Level of discordancy (%)</th>
<th>Number (per 1000) of HIV-positive individuals in SDC</th>
<th>Number (per 1000) of HIV-negative individuals in SDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesotho</td>
<td>0.9</td>
<td>23.6</td>
<td>13.6</td>
<td>48 137 52 237</td>
<td>48 468 248 764</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>5.6</td>
<td>19.0</td>
<td>12.9</td>
<td>45 102 43 190</td>
<td>45 508 257 810</td>
</tr>
<tr>
<td>Malawi</td>
<td>6.2</td>
<td>12.5</td>
<td>9.7</td>
<td>34 49 41 124</td>
<td>34 582 259 875</td>
</tr>
<tr>
<td>Kenya</td>
<td>17.6</td>
<td>6.7</td>
<td>7.3</td>
<td>25 25 16 66</td>
<td>25 623 284 932</td>
</tr>
<tr>
<td>Tanzania</td>
<td>18.3</td>
<td>6.6</td>
<td>7.9</td>
<td>28 18 20 66</td>
<td>28 627 280 935</td>
</tr>
<tr>
<td>Cameroon</td>
<td>8.6</td>
<td>5.5</td>
<td>5.1</td>
<td>18 16 21 55</td>
<td>18 648 279 945</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>10.1</td>
<td>4.6</td>
<td>5.5</td>
<td>19 8 18 45</td>
<td>19 653 282 954</td>
</tr>
<tr>
<td>Rwanda</td>
<td>4.5</td>
<td>3.1</td>
<td>2.2</td>
<td>8 12 12 32</td>
<td>8 673 288 969</td>
</tr>
<tr>
<td>Ghana</td>
<td>10.8</td>
<td>2.2</td>
<td>3.2</td>
<td>11 6 4 21</td>
<td>11 671 296 978</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>34.5</td>
<td>2.1</td>
<td>1.7</td>
<td>6 2 13 21</td>
<td>6 686 287 979</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>6.5</td>
<td>1.9</td>
<td>2.6</td>
<td>9 3 7 19</td>
<td>9 678 293 980</td>
</tr>
<tr>
<td>Guinea</td>
<td>3.9</td>
<td>1.5</td>
<td>1.5</td>
<td>5 2 7 14</td>
<td>5 687 293 985</td>
</tr>
<tr>
<td>Senegal</td>
<td>5.5</td>
<td>0.8</td>
<td>0.8</td>
<td>3 3 2 8</td>
<td>3 691 298 992</td>
</tr>
<tr>
<td>Niger</td>
<td>5.3</td>
<td>0.8</td>
<td>0.9</td>
<td>3 1 4 8</td>
<td>3 692 296 991</td>
</tr>
</tbody>
</table>

Countries fall into three categories based on HIV prevalence: high (>10%), moderate (5–10%) and low (<5%) prevalence. Modeling estimates are given for the number (per 1000) of HIV-positive and HIV-negative individuals who are in serodiscordant couples (SDC), concordant couples (CC), or not in couples (single). Calculations were based on the assumption that 70% of adults are in couples.
It is necessary to know both HIV prevalence and the level of discordancy to determine the feasibility of implementing interventions targeting SDC. However, in many countries, the level of discordancy in couples is unknown. Here we have identified a relationship between prevalence and discordancy. The statistical model (Equation 1) can now be used as a health policy tool to assess the feasibility of implementing interventions targeting SDC in countries where prevalence is known, but the level of discordancy is unknown.

Our findings have significant implications for global health policy. HPTN 052 and the Partners Study have shown TasP and PrEP can be extremely effective in reducing transmission within SDC. Here we have provided the first feasibility study of implementing these interventions. We calculated few (34–48/1000) individuals are HIV-positive (or HIV-negative) and in SDC, even when prevalence is more than 10%. Consequently, whether interventions use TasP or PrEP, they will be very challenging to implement even in high prevalence countries such as Lesotho, Malawi and Zimbabwe. Interventions targeting SDC in Burkina Faso, Côte d’Ivoire, Ethiopia, Ghana, Guinea, Niger, Rwanda and Senegal are unlikely to be feasible, because only 3–19 out of 1000 individuals are HIV-positive and in SDC in these low prevalence (<5%) countries.

In high (>10%) prevalence countries where it may be feasible to implement interventions targeting SDC, their impact on reducing transmission will depend upon the percentage of HIV-positive (for TasP) or HIV-negative (for PrEP) individuals who are in discordant couple. We have calculated that in Lesotho, Malawi and Zimbabwe, 20–27% of all HIV-positive, but less than 6% of all HIV-negative individuals, are in SDC. Consequently, using TasP for HIV-positive partners in these countries (if coverage is high [9]) could potentially significantly reduce transmission. However, providing PrEP to HIV-negative partners may have little impact on reducing transmission.

Acknowledgements

B.J.C. and S.B. acknowledge the following support provided by NIH Award#: R01AI041935, R01AI083038, and R21AI086701.

Conflicts of interest

The authors declare that they have no competing interests.

Center for Biomedical Modeling, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

Correspondence to Sally Blower, Center for Biomedical Modeling, David Geffen School of Medicine at UCLA, 10940 Wilshire Blvd, Suite 1450, Los Angeles, CA 90024, USA.
Tel: +1 310 794 3933; fax: +1 310 794 3972; e-mail: sblower@mednet.ucla.edu

Received: 28 March 2012; revised: 29 June 2012; accepted: 10 July 2012.

References


DOI:10.1097/QAD.0b013e328357f783